Skip to main content

Advertisement

Log in

Regulation of MMP-9 (type IV collagenase) production and invasiveness in gliomas by the extracellular signal-regulated kinase and jun amino-terminal kinase signaling cascades

  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Our previous studies have shown that MMP-9 levels are significantly elevated during the progression of human gliomas. In the current study, we examined the role of JNK- and ERK-dependent signaling modules in the regulation of MMP-9 production and the invasive behavior of the human glioblastoma cell line SNB19, in which JNK/ERK1 is constitutively activated. SNB19 cells that were transfected with dominant-negative JNK, MEKK, and ERK1 expression vectors showed reduced MMP-9 promoter activity. In addition, conditioned medium collected from SNB19 cells transfected with these expression vectors showed diminished MMP-9 activity in the presence of phorbol myristate acetate, as determined by gelatin zymography. The cotransfection of SNB19 cells with kinase-deficient c-raf also diminished MMP-9 promoter activity. Further, in the presence of a specific inhibitor of MEKK (PD098059), the Matrigel invasion assay showed the invasiveness of dominant-negative SNB19 cells transfected with dominant-negative JNK1 or ERK1 to be remarkably reduced. In conclusion, our studies showed for the first time that MMP-9 production and the invasive behavior of SNB19 cells are regulated by JNK- and ERK-dependent signaling modules and that interfering with either of the pathways reduces invasiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bernhard EJ, Muschel RJ, Hughes EN. Mr 92,000 gelatinase release corelates with the metastatic phenotype in transformed rat embryo cells. Cancer Res 1990; 50: 3872–7.

    PubMed  CAS  Google Scholar 

  2. Bernhard EJ, Gruber SB, Muschel RJ. Direct evidence linking expression of matrix metalloproteinase 9 (92-kDa gelatinase/collagenase) to the metastatic phenotype in transformed rat embryo cells. Proc Natl Acad Sci USA 1994; 91: 4293–7.

    Article  PubMed  CAS  Google Scholar 

  3. Wilhelm SM, Collier IE, Marmer BL et al. SV40-transformed human lung fibroblasts secrete a 92-kDa type IV collagenase which is identical to that secreted by normal human macrophages. J Biol Chem 1989; 264: 17213–21.

    PubMed  CAS  Google Scholar 

  4. Goldberg G, Strongin A, Collier IE et al. Interaction of 92-kDa type IV collagenase with the tissue inhibitor of metalloproteinase prevents dimerization, complex formation with interstitial collagenase, and activation of the proenzyme with stromelysin. J Biol Chem 1992; 267: 4583–91.

    PubMed  CAS  Google Scholar 

  5. Nakajima M, Welch DR, Wynn DM et al. Serum and Plasma Mr 92, 000 progelatinase levels correlate with spontaneous metastasis of rat 13762NF mammary adenosarcoma. Cancer Res 1993; 53: 5802–7.

    PubMed  CAS  Google Scholar 

  6. Chintala SK, Sawaya R, Fuller GN et al. Immunohistolocalization of ECM proteins in human glioblastoma cells in vitro. Cancer Lett 1996; 101: 107–14.

    Article  PubMed  CAS  Google Scholar 

  7. Chintala SK, Sawaya R, Gokaslan ZL et al. The effect of type III collagen on migration and invasion of human glioblastoma cells in vitro. Cancer Lett 1996; 102: 57–63.

    Article  PubMed  CAS  Google Scholar 

  8. Reith A, Bjervig R, Rucklidge GJ. Laminin: A potential inhibitor of rat glioma cell invasion in vitro. Anticancer Res 1994; 14: 1071–6.

    PubMed  CAS  Google Scholar 

  9. Koochekpour S, Merzak A, Pilkington GJ. Growth factors and gangliosides stimulate laminin production by human glioma cells in vitro. Neurosci Lett 1995; 186: 53–6.

    Article  PubMed  CAS  Google Scholar 

  10. Friedlander DR, Zagzag D, Grondahl-Hansen J et al. Migration of brain tumor cells on extracellular matrix proteins in vitro correlates with tumor type and grade and involves ?5 and ?1 integrins. Cancer Res 1996; 56: 1939–47.

    PubMed  CAS  Google Scholar 

  11. Apodaca G, Rutka JT, Bouhana K et al. Expression of metalloproteinases and metalloproteinase inhibitors by fetal astrocytes and glioma cells. Cancer Res 1990; 50: 2322–9.

    PubMed  CAS  Google Scholar 

  12. Rao JS, Steck PA, Mohanam S et al. Elevated levels of Mr. 92,000 type IV collagenase in human brain tumors. Cancer Res 1993; 53: 2208–11.

    PubMed  CAS  Google Scholar 

  13. Rao JS, Yamamoto M, Mohanam S et al. Expression and localization of a 92 kDa type IV collagenase in human astrocytomas in vivo. Clin Exp Metastasis 1996; 14: 12–8.

    Article  PubMed  CAS  Google Scholar 

  14. Miyagi N, Kato S, Terasaki M et al. Fibroblast growth factor-2 and-9 regulate proliferation and production of matrix metalloproteinase in human gliomas. Inter J Oncol 1998; 12: 1085–90.

    CAS  Google Scholar 

  15. Sawaya R, Yamamoto M, Mohanam S et al. Expression and localization of 72-kDa type IV collagenase in human malignant gliomas in vivo. Clin Exp Metastasis 1996; 14: 35–42.

    PubMed  CAS  Google Scholar 

  16. Sawaya R, Go Y, Kyritsis AP et al. Elevated levels of Mr. 92,000 type IV collagenase during tumor growth in vivo. Biochem Biophys Acta 1998; 251: 623–36.

    Google Scholar 

  17. Tonn JC, Kerkau S, Hanke A et al. Effect of synthetic matrixmetalloproteinase inhibitors on invasive capacity and proliferation of human malignant gliomas in vitro. Intern J Cancer 1999; 80: 764–72.

    Article  CAS  Google Scholar 

  18. Rossi M, Rooprai HK, Maidment SL et al. The influence of sequential, in vitro passages on secretion of matrix metalloproteinases by human brain tumor cells. Anticancer Res 1996; 16: 121–8.

    PubMed  CAS  Google Scholar 

  19. Uhm JH, Dooley NP, Villemure JG et al. Glioma invasion in vitro: regulation of matrix metalloprotease-2 and protein kinase C. Clin Exp Metastasis 1996; 14: 421–33.

    Article  PubMed  CAS  Google Scholar 

  20. Uhm JH, Dooley NP, Villemure JG et al. Mechanisms of glioma invasion: role of matrix-metalloproteinases. Can J Neuro Sci 1997; 24: 3–15.

    CAS  Google Scholar 

  21. Yoshida D, Piepmeir JM, Bergenheim T et al. Suppression of matrix metalloproteinase-2-mediated cell invasion in U87MG, human glioma cells by anti-microtubule agent. Br J Cancer 1998; 77: 21–5.

    PubMed  CAS  Google Scholar 

  22. Sato H, Seiki M. Regulatory mechanism of 92-kDa type IV collagenase gene expression which is associated with invasiveness of tumor cells. Oncogene 1993; 8: 395–405.

    PubMed  CAS  Google Scholar 

  23. Sato H, Kita M, Seiki M. v-Src activates the expression of 92-kDa type IV collagenase gene through the AP-1 site and the GT box homologous to retinoblastoma control elements. J Biol Chem 1993; 268: 23460–8.

    PubMed  CAS  Google Scholar 

  24. Gum R, Lengyel E, Juarez J et al. Stimulation of 92 kDa type collagenase promoter activity by ras is MEK1-independent and requires multiple transcription factor binding sites including closely spaced PEA3/ets and AP1 sequences. J Biol Chem 1996; 271: 10672–82.

    Article  PubMed  CAS  Google Scholar 

  25. Brown PH, Alani R, Preis LH et al. Suppression of oncogene-induced transformation by a deletion mutant of c-jun. Oncogene 1993; 8: 877–86.

    PubMed  CAS  Google Scholar 

  26. Bruder JT, Heidecker G, Rapp UR. Serum-, TPA-and Ras-induced expression from Ap-1/Ets-driven promoters requires Raf-1 kinase. Genes Dev 1992; 6: 545–56.

    PubMed  CAS  Google Scholar 

  27. Frost JA, Geppert TD, Cobb MH et al. A requirement for extracellular signal-regulated kinase (ERK) function in the activation of AP-1 by HA-ras, phorbol 2 myristat 13 acetate and serum. Proc Natl Acad Sci USA 1996; 91: 3844–8.

    Article  Google Scholar 

  28. Derijard B, Hibi M, Wu I et al. JNK1: A protein kinase stimulated by uv light and Ha-ras that binds and phosphorylates the c-jun activation domain. Cell 1994; 76: 1025–37.

    Article  PubMed  CAS  Google Scholar 

  29. Minden A, Lin A, McMohan M et al. Differential activation of ERK and JNK mitogen-activated protein kinases by raf-1 and MEKK. Science 1994; 266: 1719–22.

    PubMed  CAS  Google Scholar 

  30. Coso OA, Chiariello M, Yu JC et al. The small GTP-binding proteins Rac1 and Cdc42 regulate the activity of the JNK/SAPK signaling pathway. Cell 1995; 81: 1137–46.

    Article  PubMed  CAS  Google Scholar 

  31. Mohanam S, Sawaya R, McCutcheon I et al. Modulation of in vitro invasion of human glioblastoma cells by urokinase-type plasminogen activator receptor antibody. Cancer Res 1993; 53: 4143–7.

    PubMed  CAS  Google Scholar 

  32. Whitmarsh AJ, Shore P, Sharrocks AD et al. Integration of MAP kinase signal transduction pathways at the serum response element. Science 1995; 269: 403–7.

    PubMed  CAS  Google Scholar 

  33. Gille H, Sharrocks AD, Shaw PE. Phosphorylation of transcription factor p62tcf by MAP kinase stimulates ternary complex formation at c-fos promoter. Nature 1992; 358: 414–7.

    Article  PubMed  CAS  Google Scholar 

  34. Gupta S, Campbell D, Derijard B et al. Transcription factor ATF2 regulation by the JNK signal transduction pathway. Science 1995; 267: 389–93.

    PubMed  CAS  Google Scholar 

  35. Van Dam H, Wilhelm D, Herr I et al. ATF2 is preferentially activated by stress-activated protein kinases to mediate c-Jun induction in response to genotoxic agents. EMBO J 1995; 4: 1798–811.

    Google Scholar 

  36. Xia Z, Dickens M, Raingeaud J et al. Opposing effects of ERK and JNK-p38 MAP Kinases on apoptosis. Science 1995; 270: 1326–31.

    PubMed  CAS  Google Scholar 

  37. Verheij M, Bose R, Lin XH et al. Requirement for ceramide initiated SAPK/JNK signaling in stress-induced apoptosis. Nature 1996; 380: 75–9.

    Article  PubMed  CAS  Google Scholar 

  38. Chen YR, Wang X, Templeton D et al. The role of c-Jun-terminal kinase JNK in apoptosis induced by ultraviolet C and 7 radiation. J Biol Chem 1996; 271: 31929–36.

    Article  PubMed  CAS  Google Scholar 

  39. Antonyak MA, Moscatello DK, Wong AJ. Constitutive activation of c-Jun N-terminal kinase by a mutant epidermal growth factor receptor. J Biol Chem 1998; 273: 2817–22.

    Article  PubMed  CAS  Google Scholar 

  40. Xie W, Herschman HR. v-src induced prostglandin synthase 2 gene expression by activation of the c-Jun terminal kinase and the c-Jun transcription factor. J Biol Chem 1995; 270: 27622–8.

    Article  PubMed  CAS  Google Scholar 

  41. Hurwitz A, Dushnik M, Mayer M et al. Cytokine-mediated regulation of rat ovarian funciton: interleukin-1 stimulates the accumulation of a 92-kilodlton gelatinase. Endocrinology 1993; 132: 2709–14.

    Article  PubMed  CAS  Google Scholar 

  42. Gum R, Wang H, Lengyel E et al. Regulation of 92 KDa type IV collagenase exopresion by the Jun aminoterminal kinase and the extracellular signal-regulated kinase-dependent signaling cascades. Oncogene 1997; 14: 1481–73.

    Article  PubMed  CAS  Google Scholar 

  43. Simon C, Goepfert H, Boyd D. Inhibition of the p38 mitogenactivated protein kinase by SB203580 blocks PMA-induced Mr 92,000 type IV collagenase secretion and in vitro invasion. Cancer Res 1998; 58: 1135–9.

    PubMed  CAS  Google Scholar 

  44. Huang S, New L, Pan Z et al. Urokinase plasminogen activator/urokinase-specific surface receptor expression and matrix invasion by breast cancer cells requires constitutive p38alpha mitogenactivated protein kinase activity. J Biol Chem 2000; 275: 12266–72.

    Article  PubMed  CAS  Google Scholar 

  45. Tanaka K, Abe M, Sato Y. Role of Extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase in the signal transduction of basic fibroblast growth factor in endothelial cells during angiogenesis. Jpn J Cancer Res 1999; 90: 647–54.

    PubMed  CAS  Google Scholar 

  46. Lampert K, Machein U, Machein MR et al. Expression of matrix metalloproteinases and their tissue inhibitors in human brain tumors. Am J Pathol 1998; 153: 429–37.

    PubMed  CAS  Google Scholar 

  47. Forsyth PA, Wong H, Liang TD et al. Gelatinase-A (MMP-2), gelatinase-B (MMP-9) and membrane type matrix metalloproteinase-1 (MT1-MMP) are involved in different aspects of the pathophysiology of malignant gliomas. Br J Cancer 1999; 79: 1828–35.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lakka, S.S., Jasti, S.L., Kyritsis, A.P. et al. Regulation of MMP-9 (type IV collagenase) production and invasiveness in gliomas by the extracellular signal-regulated kinase and jun amino-terminal kinase signaling cascades. Clin Exp Metastasis 18, 245–252 (2000). https://doi.org/10.1023/A:1006724826083

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006724826083

Navigation