Skip to main content
Log in

Nucleolar dominance: uniparental gene silencing on a multi-megabase scale in genetic hybrids

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Nucleolar dominance is a phenomenon in hybrids or allopolyploids in which nucleoli form on chromosomes inherited from only one of the two parents. The molecular basis for nucleolar dominance is the transcription by RNA polymerase I of only one parental set of ribosomal RNA genes (rRNA genes). These rRNA genes are clustered by the hundreds, or thousands, of copies, often spanning tens of millions of basepairs of chromosomal DNA at loci known as nucleolus organizer regions (NORs). Enforcement of nucleolar dominance appears to be accomplished by selectively silencing one set of rRNA genes via chemical modifications of chromatin. However, the mechanisms responsible for initially discriminating among the parental sets of rRNA genes and establishing nucleolar dominance remain unclear. Possibilities include mechanisms that act on each rRNA gene or mechanisms that affect whole NORs or even larger chromosomal domains. This review provides a historical perspective of nucleolar dominance research, explores the most popular hypotheses and their shortcomings, and offers some speculations concerning alternative hypotheses to be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amado, L., Abranches, R., Neves, N. and Viegas, W. 1997. Development-dependent inheritance of 5–azacytidine-induced epimutations in triticale: analysis of rDNA expression patterns. Chromosome Res. 5: 445–450.

    PubMed  Google Scholar 

  • Appels, R., Moran, L.B. and Gustafson, J.P. 1986. The structure of DNA from rye (Secale cereale) NOR R1 locus and its behaviour in wheat backgrounds. Can. J. Genet. Cytol. 28: 673–685.

    Google Scholar 

  • Bach, R., Allet, B. and Crippa, M. 1981. Sequence organization of the spacer in the ribosomal genes of Xenopus laevis and Xenopus borealis. Nucl. Acids Res. 9: 5311–5330.

    PubMed  Google Scholar 

  • Bell, S.P., Jantzen, H.M. and Tjian, R. 1990. Assembly of alternative multiprotein complexes directs rRNA promoter selectivity. Genes Dev. 4: 943–954.

    PubMed  Google Scholar 

  • Bender, J. and Fink, G.R. 1995. Epigenetic control of an endogenous gene family is revealed by a novel blue fluorescent mutant of Arabidopsis. Cell 83: 725–734.

    PubMed  Google Scholar 

  • Bird, A. 1992. The essentials of DNA methylation. Cell 70: 5–8.

    PubMed  Google Scholar 

  • Blackler, A.W. and Gecking, C.A. 1972. Transmission of sex cells of one species through the body of a second species in the genus Xenopus. II. Interspecific matings. Dev. Biol. 27: 385–394.

    PubMed  Google Scholar 

  • Boseley, P., Moss, T., Machler, M., Portmann, R. and Birnstiel, M. 1979. Sequence organization of the spacer DNA in a ribosomal gene unit of X. laevis. Cell 17: 19–31.

    PubMed  Google Scholar 

  • Bramwell, M.E. and Handmaker, S.D. 1971. Ribosomal RNA synthesis in human-mouse hybrid cells. Biochim. Biophys. Acta 232: 580–593.

    PubMed  Google Scholar 

  • Braunstein, M., Rose, A.B., Holmes, S.G., Allis, C.D. and Broach, J.R. 1993. Transcriptional silencing in yeast is associated with reduced nucleosome acetylation. Genes Dev. 7: 592–604.

    PubMed  Google Scholar 

  • Busby, S.J. and Reeder, R.H. 1983. Spacer sequences regulate transcription of ribosomal gene plasmids injected into Xenopus embryos. Cell 34: 989–996.

    PubMed  Google Scholar 

  • Cassidy, D.M. and Blackler, A.W. 1974. Repression of nucleolar organizer activity in an interspecific hybrid of the genus Xenopus. Dev. Biol. 41: 84–96.

    Google Scholar 

  • Chen, Z.J. and Pikaard, C.S. 1997a. Epigenetic silencing of RNA polymerase I transcription: a role for DNA methylation and histone modification in nucleolar dominance. Genes Dev. 11: 2124–2136.

    Google Scholar 

  • Chen, Z.J. and Pikaard, C.S. 1997b. Transcriptional analysis of nucleolar dominance in polyploid plants: biased expression/ silencing of progenitor rRNA genes is developmentally regulated in Brassica. Proc. Natl. Acad. Sci. USA 94: 3442–3447.

    PubMed  Google Scholar 

  • Chen, Z.J., Comai, L. and Pikaard, C.S. 1998. Gene dosage and stochastic effects determine the severity and direction of uniparental rRNA gene silencing (nucleolar dominance) in Arabidopsis allopolyploids. Proc. Natl. Acad. Sci. USA 95: 14891–14896.

    PubMed  Google Scholar 

  • Chomet, P.S. 1991. Cytosine methylation in gene-silencing mechanisms. Curr. Opin. Cell. Biol. 3: 438–443.

    PubMed  Google Scholar 

  • Conconi, A., Widmer, R.M., Koller, T. and Sogo, J.M. 1989. Two different chromatin structures coexist in ribosomal RNA genes throughout the cell cycle. Cell 57: 753–761.

    PubMed  Google Scholar 

  • Croce, C.M., Talavera, A., Basilico, C. and Miller, O.J. 1977. Suppression of production of mouse 28S rRNA in mouse-human hybrids segregating chromosomes. Proc. Natl. Acad. Sci. USA 74: 694–697.

    PubMed  Google Scholar 

  • Crosby, A.R. 1957. Nucleolar activity of lagging chromosomes in wheat. Am. J. Bot. 44: 813–822.

    Google Scholar 

  • Dammann, R., Lucchini, R., Koller, T. and Sogo, J.M. 1995. Transcription in the yeast rRNA gene locus: distribution of the active gene copies and chromatin structure of their flanking regulatory sequences. Mol. Cell. Biol. 15: 5294–5303.

    PubMed  Google Scholar 

  • DeWinter, R. and Moss, T. 1986. Spacer promoters are essential for efficient enhancement of X. laevis ribosomal transcription. Cell 44: 313–318.

    PubMed  Google Scholar 

  • DeWinter, R. and Moss, T. 1987. A complex array of sequences enhances ribosomal transcription in Xenopus laevis. J. Mol. Biol. 196: 813–827.

    PubMed  Google Scholar 

  • Dover, G.A. and Flavell, R.B. 1984. Molecular co-evolution: rDNA divergence and the maintenance of function. Cell 38: 622–623.

    Article  PubMed  Google Scholar 

  • Dunaway, M. 1989. A transcription factor, TFIS, interacts with both the promoter and enhancer of the Xenopus rRNA genes. Genes Dev. 3: 1768–1778.

    PubMed  Google Scholar 

  • Durica, D.S. and Krider, H.M. 1977. Studies on the ribosomal RNA cistrons in interspecific Drosophila hybrids. Dev. Biol. 59: 62–74.

    PubMed  Google Scholar 

  • Durica, D.S. and Krider, H.M. 1978. Studies on the ribosomal RNA cistrons in Drosophila hybrids. II. Heterochromatic regions mediating nucleolar dominance. Genetics 89: 37–64.

    Google Scholar 

  • Eden, S. and Cedar, H. 1994. Role of DNA methylation in the regulation of transcription. Curr. Opin. Genet. Dev. 4: 255–259.

    PubMed  Google Scholar 

  • Eden, S., Hashimshony, T., Keshet, I., Cedar, H. and Thorne, A.W. 1998. DNA methylation models histone acetylation. Nature 394: 842.

    PubMed  Google Scholar 

  • Elicieri, G. L. and Green, H. 1969. Ribosomal RNA synthesis in human-mouse hybrid cells. J. Mol. Biol. 41: 253–260.

    PubMed  Google Scholar 

  • Federoff, N. 1996. Epigenetic regulation of the maize Spm transposable element. In: V. Russo, R.A. Martienssen and A.D. Riggs (Eds.) Epigenetic Mechanisms of Gene Regulation, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  • Federoff, N., Sclappi, M., and Raina, R. 1995. Epigenetic regulation of the maize Spm transposon. BioEssays 17: 291–297.

    PubMed  Google Scholar 

  • Flavell, R.B. 1986. The structure and control of expression of ribosomal RNA genes. Oxford Surv. Plant Mol. Cell. Biol. 3: 252–274.

    Google Scholar 

  • Flavell, R.B. 1994. Inactivation of gene expression in plants as a consequence of specific sequence duplication. Proc. Natl. Acad. Sci. USA 91: 3490–3496.

    PubMed  Google Scholar 

  • Flavell, R.B. and O'Dell, M. 1979. The genetic control of nucleolus formation in wheat. Chromosoma 71: 135–152.

    Google Scholar 

  • Flavell, R.B., O'Dell, M. and Thompson, W. F. 1988. Regulation of cytosine methylation in ribosomal DNA and nucleolus organizer expression in wheat. J. Mol. Biol. 204: 523–534.

    PubMed  Google Scholar 

  • Frieman, M., Chen, Z.J., Saez-Vasquez, J., Shen, L.A. and Pikaard, C.S. 1999. RNA polymerase I transcription in a Brassica interspecific hybrid and its progenitors: tests of transcription factor involvement in nucleolar dominance. Genetics 152: 451–460.

    PubMed  Google Scholar 

  • Gabbara, S. and Bhagwat, A.S. 1995. The mechanism of inhibition of DNA (cytosine-5–)-methyltransferases by 5–azacytosine is likely to involve methyl transfer to the inhibitor. Biochem. J. 307: 87–92.

    PubMed  Google Scholar 

  • Gartler, S.M. and Goldman, M.A. 1994. Reactivation of inactive X-linked genes. Dev. Genet. 15: 504–514.

    PubMed  Google Scholar 

  • Gartler, S.M., and Riggs, A.D. 1983. Mammalian X-chromosome inactivation. Annu. Rev. Genet. 17: 155–190.

    PubMed  Google Scholar 

  • Gerbi, S.A. 1985. Evolution of ribosomal DNA. In: R.J. McIntyre (Ed.) Molecular Evolutionary Genetics, Plenum Press, New York, pp. 419–517.

    Google Scholar 

  • Givens, J.F. and Phillips, R.L. 1976. The nucleolus organizer region of maize (Zea mays L.). Chromosoma 57: 103–117.

    Article  Google Scholar 

  • Grant, S.G. and V.M., C. 1988. Mechanisms of X-chromosome regulation. Annu. Rev. Genet. 22: 199–233.

    PubMed  Google Scholar 

  • Grummt, I., Roth, E. and Paule, M.R. 1982. rRNA transcription in vitro is species-specific. Nature 296: 173–174.

    PubMed  Google Scholar 

  • Grunstein, M. 1997. Histone acetylation in chromation structure and transcription. Nature 389: 349–352.

    PubMed  Google Scholar 

  • Hannan, K.M., Hannan, R.D. and Rothblum, L.I. 1998. Transcription by RNA polymerase I. Front Biosci. 3: 376–398.

    Google Scholar 

  • Heard, E., Clerc, P. and Avner, P. 1997. X-chromosome inactivation in mammals. Annu. Rev. Genet. 31: 571–610.

    PubMed  Google Scholar 

  • Heitz, E. 1931. Nukleolen und Chromosomen in der Gattung Vicia. Planta 15: 495–505.

    Google Scholar 

  • Heneen, W.K. 1962. Karyotype studies in Agropyron junceum, A. repens and their spontaneous hybrids. Hereditas 48: 471–502.

    Google Scholar 

  • Honjo, T. and Reeder, R.H. 1973. Preferential transcription of Xenopus laevis ribosomal RNA in interspecies hybrids between Xenopus laevis and Xenopus mulleri. J. Mol. Biol. 80: 217–228.

    PubMed  Google Scholar 

  • Ingle, J., Timmis, J. and Sinclair, J. 1975. The relationship between satellite DNA, ribosomal RNA redundancy and genome size in plants. Plant Physiol. 55: 496–501.

    Google Scholar 

  • Jacob, S.T. 1995. Regulation of ribosomal gene transcription. Biochem. J. 306: 617–626.

    PubMed  Google Scholar 

  • Jeddeloh, J.A., Bender, J. and Richards, E.J. 1998. The DNA methylation locus DDM1 is required for maintenance of gene silencing in Arabidopsis. Genes Dev. 12: 1714–1725.

    PubMed  Google Scholar 

  • Jones, P.L., Veenstra, G.J., Wade, P.A., Vermaak, D., Kass, S.U., Landsberger, N., Strouboulis, J. and Wolffe, A.P. 1998. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nature Genet. 19: 187–191.

    PubMed  Google Scholar 

  • Jupe, E.R. and Zimmer, E.A. 1993. DNaseI-sensitive and undermethylated rDNA is preferentially expressed in a maize hybrid. Plant Mol. Biol. 21: 805–821.

    PubMed  Google Scholar 

  • Kadonaga, J.T. 1998. Eukaryotic transcription: an interlaced network of transcription factors and chromatin-modifying machines. Cell 92: 307–313.

    Article  PubMed  Google Scholar 

  • Karpen, G.H., Schaefer, J.E. and Laird, C.D. 1988. A Drosophila rRNA gene located in euchromatin is active in transcription and nucleolus formation. Genes Dev. 2: 1745–1763.

    PubMed  Google Scholar 

  • Kasha, K.J. and Sadasivaiah, R.S. 1971. Genome relationships between Hordeum vulgare L. and H. bulbosum L. Chromosoma 35: 264–287.

    Google Scholar 

  • Kay, G.F., Barton, S.C., Surani, M.A. and Rastan, S. 1994. Imprinting and X chromosome counting mechanisms determine Xist expression in early mouse development. Cell 77: 639–650.

    PubMed  Google Scholar 

  • Keep, E. 1960. Amphiplasty in Ribes. Nature 188: 339.

    PubMed  Google Scholar 

  • Keep, E. 1962. Satellite and nucleolar number in hybrids between Ribes nigrum and R. grossulari and in their backcrosses. Can. J. Genet. Cytol. 4: 206–218.

    Google Scholar 

  • Kruh, J. 1982. Effects of sodium butyrate, a new pharmacological agent, on cells in culture. Mol. Cell. Biochem. 42: 65–82.

    PubMed  Google Scholar 

  • Labhart, P. 1994. Negative and positive effects of CpG-methylation on Xenopus ribosomal gene transcription in vitro. FEBS Lett. 356: 302–306.

    PubMed  Google Scholar 

  • Labhart, P. and Reeder, R.H. 1984. Enhancer-like properties of the 60/81 bp elements in the ribosomal gene spacer of Xenopus laevis. Cell 37: 285–289.

    PubMed  Google Scholar 

  • Labhart, P. and Reeder, R.H. 1985. Xenopus ribosomal gene enhancers function when inserted inside the gene they enhance. Nucl. Acids Res. 13: 8999–9009.

    PubMed  Google Scholar 

  • Lacadena, R., Cermeno, M., Orellana, J. and Santos, J. L. 1984. Evidence for wheat-rye nucleolar competition (amphiplasty) in triticale by silver-staining procedure. Theor. Appl. Genet. 67: 207–213.

    Google Scholar 

  • Lange, W. and Jochemsen, G. 1976. Karyotypes, nucleoli, and amphiplasty in hybrids between Hordeum vulgare L. and Hordeum bulbosum L. Genetica 46: 217–233.

    Google Scholar 

  • Learned, R.M., Cordes, S. and Tjian, R. 1985. Purification and characterization of a transcription factor that confers promoter specificity to human RNA polymerase I. Mol. Cell. Biol. 5: 1358–1369.

    PubMed  Google Scholar 

  • Li, E., Beard, C. and Jaenisch, R. 1993. Role for DNA methylation in genomic imprinting. Nature 366: 362–365.

    PubMed  Google Scholar 

  • Lucchini, R. and Sogo, J.M. 1992. Different chromatin structures along the spacers flanking active and inactive Xenopus rRNA genes. Mol. Cell. Biol. 12: 4288–4296.

    PubMed  Google Scholar 

  • Lyon, M.F. 1993. Epigenetic inheritance in mammals. Trends Genet. 9: 123–128.

    PubMed  Google Scholar 

  • Martienssen, R.A. 1996. Epigenetic silencing of Mu transposable elements in maize. In: V. Russo, R.A. Martienssen and A.D. Riggs (Eds.) Epigenetic Mechanisms of Gene Regulation, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 593–608.

    Google Scholar 

  • Martienssen, R.A. and Richards, E.J. 1995. DNA methylation in eukaryotes. Curr. Opin. Genet. Dev. 5: 234–242.

    PubMed  Google Scholar 

  • Martini, G., O'Dell, M. and Flavell, R.B. 1982. Partial inactivation of wheat nucleolus organizers by the nucleolus organizer chromosomes from Aegilops umbellulata. Chromosoma 84: 687–700.

    Article  Google Scholar 

  • Matzke, M.A. and Matzke, A.J.M. 1995. How and why do plants inactivate homologous (trans)genes? Plant Physiol. 107: 679–685.

    PubMed  Google Scholar 

  • Matzke, M.A., Neuhuber, F. and Matzke, A.J.M. 1989. Reversible methylation and inactivation of marker genes in sequentially transformed tobacco plants. EMBO J. 8: 643–649.

    Google Scholar 

  • McClintock, B. 1934. The relationship of a particular chromosomal element to the development of the nucleoli in Zea mays. Z. Zellforsch. Mikr. Anat. 21: 294–328.

    Google Scholar 

  • McKnight, S.L. and Miller, O.L. 1976. Ultrastructural patterns of RNA synthesis during early embryogenesis of Drosophila melanogaster. Cell 8: 305–319.

    PubMed  Google Scholar 

  • McMurphy, L.M. and Rayburn, A.L. 1994. Cytological evidence for nucleolar competition in a maize hybrid. J. Hered. 85: 407–410.

    Google Scholar 

  • Miesfeld, R. and Arnheim, N. 1984. Species-specific rDNA transcription is due to promoter-specific binding factors. Mol. Cell. Biol. 4: 221–227.

    PubMed  Google Scholar 

  • Miesfeld, R., Sollner-Webb, B., Croce, C. and Arnheim, N. 1984. The absence of a human-specific ribosomal DNA transcription factor leads to nucleolar dominance in mouse-human hybrid cells. Mol. Cell. Biol. 4: 1306–1312.

    PubMed  Google Scholar 

  • Miller, O.J., Miller, D.A., Dev, V.G., Tantravahi, R. and Croce, C.M. 1976. Expression of human and suppression of mouse nucleolus organizer activity in mouse-human somatic cell hybrids. Proc. Natl. Acad. Sci. USA 73: 4531–4535.

    PubMed  Google Scholar 

  • Mishima, Y., Financsek, I., Kominami, R. and Muramatsu, M. 1982. Fractionation and reconstitution of factors required for accurate transcription of mammalian ribosomal RNA genes: identification of a species-dependent initiation factor. Nucl. Acids Res. 10: 6659–6670.

    PubMed  Google Scholar 

  • Morgan, G.T., Reeder, R.H. and Bakken, A.H. 1983. Transcription in cloned spacers of Xenopus laevis ribosomal DNA. Proc. Natl. Acad. Sci. USA 80: 6490–6494.

    PubMed  Google Scholar 

  • Moss, T. 1983a. Transcription of cloned Xenopus laevis ribosomal DNA microinjected into Xenopus oocytes, and the identification of an RNA polymerase I promoter. Cell 30: 835–842.

    Google Scholar 

  • Moss, T. 1983b. A transcriptional function for the repetitive ribosomal spacer in Xenopus laevis. Nature 302: 223–228.

    PubMed  Google Scholar 

  • Moss, T. and Stefanovsky, V.Y. 1995. Promotion and regulation of ribosomal transcription in eukaryotes by RNA polymerase I. Prog. Nucl. Acids Res. Mol. Biol. 50: 25–66.

    Google Scholar 

  • Mukai, Y., Endo, T.R. and Gill, B.S. 1991. Physical mapping of the 18S.26S rRNA multigene family in common wheat: identification of a new locus. Chromosoma 100: 71–78.

    Google Scholar 

  • Nan, X., Ng, H.H., Johnson, C.A., Laherty, C.D., Turner, B.M., Eisenman, R.N. and Bird, A. 1998. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393: 386–389.

    PubMed  Google Scholar 

  • Navashin, M.S. 1928. Amphiplastie, eine neue karyologische Erscheinung. Proc. Int. Conf. Genet. 5: 1148–1152.

    Google Scholar 

  • Navashin, M. 1934. Chromosomal alterations caused by hybridization and their bearing upon certain general genetic problems. Cytologia 5: 169–203.

    Google Scholar 

  • Neves, N., Heslop-Harrison, J.S. and Viegas, W. 1995. rRNA gene activity and control of expression mediated by methylation and imprinting during embryo development in wheat x rye hybrids. Theor. Appl. Genet. 91: 529–533.

    Google Scholar 

  • Neves, N., Castilho, A., Silva, M., Heslop-Harrison, J.S. and Viegas, W. 1997a. Genomic interactions: gene expression, DNA methylation and nuclear architecture. In: N. Henriques-Gil, J.S. Parker and M.J. Puertas (Eds.) Chromosomes Today, Chapman & Hall, London, pp. 182–200.

    Google Scholar 

  • Neves, N., Silva, M., Heslop-Harrison, J.S. and Viegas, W. 1997b. Nucleolar dominance in triticales: control by unlinked genes. Chromosome Res. 5: 125–131.

    PubMed  Google Scholar 

  • Nicoloff, H. 1979. 'Nucleolar dominance' as observed in barley translocation lines with specifically reconstructed SAT chromosomes. Theor. Appl. Genet. 55: 247–251.

    Google Scholar 

  • Nomura, M. 1999. Regulation of ribosome biosynthesis in Escherichia coli and Saccharomyces cerevisiae: diversity and common principles. J. Bact. 181: 6857–6864.

    PubMed  Google Scholar 

  • Onishi, T., Berglund, C. and Reeder, R.H. 1984. On the mechanism of nucleolar dominance in mouse-human somatic cell hybrids. Proc. Natl. Acad. Sci. USA 81: 484–487.

    PubMed  Google Scholar 

  • Pape, L.K., Windle, J.J., Mougey, E.B. and Sollner-Webb, B. 1989. The Xenopus ribosomal DNA 60–and 81–base-pair repeats are position-dependent enhancers that function at the establishment of the preinitiation complex: analysis in vivo and in an enhancerresponsive in vitro system. Mol. Cell. Biol. 9: 5093–5104.

    PubMed  Google Scholar 

  • Paule, M.R. 1994. Transcription of ribosomal RNA by eukaryotic RNA polymerase I. In: R.C. Conaway and J.W. Conaway (Eds) Transcription: Mechanisms and Regulation, Raven Press, New York, pp. 83–106.

    Google Scholar 

  • Perry, R.P., Kelley, D.E., Schibler, U., Huebner, K. and Croce, C.M. 1976. Selective suppression of the transcription of ribosomal genes in mouse-human hybrid cells. J. Cell. Physiol. 98: 553–560.

    Google Scholar 

  • Phillips, R.L. 1978. Molecular cytogenetics of the nucleolus organizer region. In: D.B. Walden (Ed.) Maize Breeding and Genetics, John Wiley, New York, pp. 711–741.

    Google Scholar 

  • Phillips, R.L., Kleese, R.A. and Wang, S.S. 1971. The nucleolus organizer region of maize (Zea mays L.): chromosomal site of DNA complementary to ribosomal RNA. Chromosoma 36: 79–88.

    Google Scholar 

  • Pikaard, C.S. and Reeder, R.H. 1988. Sequence elements essential for function of the Xenopus laevis ribosomal DNA enhancers. Mol. Cell. Biol. 8: 4282–4288.

    PubMed  Google Scholar 

  • Pikaard, C.S., McStay, B., Schultz, M.C., Bell, S.P. and Reeder, R.H. 1989. The Xenopus ribosomal gene enhancers bind an essential polymerase I transcription factor, xUBF. Genes Dev. 3: 1779–1788.

    PubMed  Google Scholar 

  • Pikaard, C.S., Pape, L.K., Henderson, S.L., Ryan, K., Paalman, M.H., Lopata, M.A., Reeder, R.H. and Sollner-Webb, B. 1990. Enhancers for RNA polymerase I inmouse ribosomal DNA. Mol. Cell. Biol. 10: 4816–4825.

    PubMed  Google Scholar 

  • Rainier, S. and Feinberg, A.P. 1994. Genomic imprinting, DNA methylation and cancer. J. Natl. Cancer Inst. 86: 753–759.

    PubMed  Google Scholar 

  • Razin, A. and Cedar, H. 1994. DNA methylation and genomic imprinting. Cell 77: 473–476.

    PubMed  Google Scholar 

  • Reeder, R.H. 1974. Ribosomes from eukaryotes: genetics. In: M. Nomura (Ed.) Ribosomes, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 489–519.

    Google Scholar 

  • Reeder, R.H. 1984. Enhancers and ribosomal gene spacers. Cell 38: 349–351.

    Article  PubMed  Google Scholar 

  • Reeder, R.H. 1985. Mechanisms of nucleolar dominance in animals and plants. J. Cell Biol. 101: 2013–2016.

    PubMed  Google Scholar 

  • Reeder, R.H. 1992. Regulation of transcription by RNA polymerase I. In: S.L. McKnight and K.R. Yamamoto (Eds) Transcriptional Regulation, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 315–347.

    Google Scholar 

  • Reeder, R.H. and Roan, J.G. 1984. The mechanism of nucleolar dominance in Xenopus hybrids. Cell 38: 39–44.

    Google Scholar 

  • Reeder, R.H., Roan, J.G. and Dunaway, M. 1983. Spacer regulation of Xenopus ribosomal gene transcription: competition in oocytes. Cell 35: 449–456.

    PubMed  Google Scholar 

  • Richards, E.J. 1997. DNA methylation and plant development. Trends Genet. 13: 319–323.

    Google Scholar 

  • Rivin, C.J., Cullis, C.A. and Walbot, V. 1986. Evaluating quantitative variation in the genome of Zea mays. Genetics 113: 1009–1019.

    PubMed  Google Scholar 

  • Rogers, S.O. and Bendich, A.J. 1987. Ribosomal RNA genes in plants: variability in copy number and in the intergenic spacer. Plant Mol. Biol. 9: 509–520.

    Google Scholar 

  • Saez-Vasquez, J. and Pikaard, C.S. 1997. Extensive purification of a putative RNA polymerase I holoenzyme from plants that accurately initiates rRNA gene transcription in vitro. Proc. Natl. Acad. Sci. USA 94: 11869–11874.

    Article  PubMed  Google Scholar 

  • Saghai-Maroof, M.A., Soliman, K.M., Jorgensen, R.A. and Allard, R.W. 1984. Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc. Natl. Acad. Sci. USA 81: 8014–8018.

    PubMed  Google Scholar 

  • Sardana, R., O'Dell, M. and Flavell, R. 1993. Correlation between the size of the intergenic regulatory region, the status of cytosine methylation of rRNA genes and nucleolar expression in wheat. Mol. Gen. Genet. 236: 155–162.

    PubMed  Google Scholar 

  • Schnapp, A., Rosenbauer, H. and Grummt, I. 1991. Trans-acting factors involved in species-specificity and control of mouse ribosomal gene transcription. Mol. Cell. Biochem. 104: 137–147.

    PubMed  Google Scholar 

  • Schubert, I. and Kunzel, G. 1990. Position-dependent NOR activity in barley. Chromosoma 99: 352–359.

    Google Scholar 

  • Silva, M., Queiroz, A., Neves, N., Barao, A., Castilho, A., Morais-Cecilio, L. and Viegas, W. 1995. Reprogramming of rye rDNA in triticale during microsporogenesis. Chromosome Res. 3: 492–496.

    PubMed  Google Scholar 

  • Sollner-Webb, B. and Tower, J. 1986. Transcription of cloned eukaryotic ribosomal RNA genes. Annu. Rev. Biochem. 55: 801–830.

    PubMed  Google Scholar 

  • Soprano, K.J. and Baserga, R. 1980. Reactivation of ribosomal RNA genes in human-mouse hybrid cells by 12–Otetradecanoylphorbol 13–acetate. Proc. Natl. Acad. Sci. USA 77: 1566–1569.

    PubMed  Google Scholar 

  • Soprano, K.J., Dev, V.G., Croce, C.M. and Baserga, R. 1979. Reactivation of silent rRNA genes by simian virus 40 in mouse-human hybrid cells. Proc. Natl. Acad. Sci. USA 76: 3885–3889.

    PubMed  Google Scholar 

  • Thomas, J.B. and Kaltsikes, P.J. 1983. Effects of chromosomes 1B and 6B on nucleolus formation in hexaploid triticale. Can. J. Genet. Cytol. 25: 292–297.

    Google Scholar 

  • Thompson, W.F. and Flavell, R.B. 1988. DNase I sensitivity of ribosomal RNA genes in chromatin and nucleolar dominance in wheat. J. Mol. Biol. 204: 535–548.

    PubMed  Google Scholar 

  • Trendelenburg, M.F. and Gurdon, J.B. 1978. Transcription of cloned Xenopus ribosomal genes visualized after injection into oocyte nuclei. Nature 276: 292–294.

    PubMed  Google Scholar 

  • U, N. 1935. Genome analysis in Brassica with special references to the experimental formation of B. napus and peculiar mode of fertilization. Jpn. J. Genet. 7: 389–452.

    Google Scholar 

  • Vielle-Calzada, J.P., Thomas, J., Spillane, C., Coluccio, A., Hoeppner, M.A. and Grossniklaus, U. 1999. Maintenance of genomic imprinting at the Arabidopsis medea locus requires zygotic DDM1 activity. Genes Dev. 13: 2971–2982.

    PubMed  Google Scholar 

  • Viera, A., Morais, L., Barao, A., Mello-Sampayo, T. and Viegas, W.S. 1990a. 1R chromosome nucleolus organizer region activation by 5–azacytidine in wheat × rye hybrids. Genome 33: 707–712.

    Google Scholar 

  • Viera, R., Mello-Sampayo, T. and Viegas, W. 1990b. Genetic control of 1R nucleolus organizer region expression in the presence of wheat genomes. Genome 33: 713–718.

    Google Scholar 

  • Wade, P.A. and Wolffe, A.P. 1997. Histone acetyltransferases in control. Curr. Biol. 7: 82–84.

    Google Scholar 

  • Walker, E.L. 1998. Paramutation of the r1 locus of maize is associated with increased cytosine methylation. Genetics 148: 1973–1981.

    PubMed  Google Scholar 

  • Wallace, H. and Birnstiel, M.L. 1966. Ribosomal cistrons and the nucleolar organizer. Biochim. Biophys. Acta 114: 296–310.

    Google Scholar 

  • Wallace, H. and Langridge, W.H.R. 1971. Differential amphiplasty and the control of ribosomal RNA synthesis. Heredity 27: 1–13.

    Google Scholar 

  • Warner, J. 1989. Synthesis of ribosomes in Saccharomyces cerevisiae. Microbiol. Rev. 53: 256–271.

    PubMed  Google Scholar 

  • Warner, J.R. 1990. The nucleolus and ribosome formation. Curr. Opin. Cell Biol. 2: 521–527.

    PubMed  Google Scholar 

  • Weiss, M. and Green, H. 1967. Human-mouse hybrid cell lines containing partial complements of human chromosomes and functioning human genes. Proc. Natl. Acad. Sci. USA 58: 1104–1111.

    PubMed  Google Scholar 

  • Wilkinson, J. 1944. The cytology of Salix in relation to its taxonomy. Ann. Bot. 8: 269–284.

    Google Scholar 

  • Willard, H.F. 1996. X chromosome inactivation, XIST, and the pursuit of the X-inactivation center. Cell 86: 5–7.

    PubMed  Google Scholar 

  • Yeh, B.P. and Peloquin, S.J. 1965. The nucleolus associated chromosome of Solanum species and hybrids. Am. J. Bot. 52: 626.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pikaard, C.S. Nucleolar dominance: uniparental gene silencing on a multi-megabase scale in genetic hybrids. Plant Mol Biol 43, 163–177 (2000). https://doi.org/10.1023/A:1006471009225

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006471009225

Navigation