Skip to main content
Log in

Characterization and cDNA cloning of two glycine- and histidine-rich antimicrobial peptides from the roots of shepherd's purse, Capsella bursa-pastoris

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Two novel antimicrobial peptides were isolated and characterized from the roots of shepherd's purse, Capsella bursa-pastoris. These antimicrobial peptides, named shepherin I and shepherin II, consist of 28 and 38 amino acids, respectively, and are glycine- and histidine-rich peptides. Shepherin I and shepherin II have 67.9% and 65.8% (mol/mol) glycine, respectively, and 28.6% and 21.1% (mol/mol) histidine, respectively. Both shepherins have a Gly-Gly-His motif. These antimicrobial peptides exhibit antimicrobial activity against Gram-negative bacteria and fungi. Circular dichroism spectra of shepherin I and shepherin II showed that shepherin I and shepherin II in 50% trifluoroethanol have 66.7% and 75% random coils, respectively, without any α-helices. cDNA sequence analysis revealed that shepherin I and shepherin II are produced from a single polypeptide, designated shep-GRP, consisting of 120 amino acids; shep-GRP has five distinct domains, an amino-terminal putative signal peptide, a shepherin I, a linker dipeptide, a shepherin II and a carboxy-terminal peptide. Southern blot analysis indicates that the gene encoding shepherins belongs to a low-complexity gene family. Northern blot analysis revealed that transcripts of shep-GRP are present in roots but not in leaves and stems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Boman, H.G. 1995. Peptide antibiotics and their roles in innate immunity. Annu. Rev. Immunol. 13: 61–92.

    PubMed  Google Scholar 

  • Broekaert, W.F., Mariën, W., Terras, F.R.G., De Bolle, M.F.C., Proost, P., Damme, J.V., Dillen, L., Claeys, M., Rees, S.B., Vanderleyden, J. and Cammue, B.P.A. 1992. Antimicrobial peptides from Amaranthus caudatus seeds with sequence homology to the cysteine/glycine-rich domain of chitin-binding proteins. Biochemistry 31: 4308–4314.

    PubMed  Google Scholar 

  • Broekaert, W.F., Terras, F.R.G., Cammue, B.P.A. and Osborn, R.W. 1995. Plant defensins: novel antimicrobial peptides as components of the host defense system. Plant Physiol. 108: 1353–1358.

    PubMed  Google Scholar 

  • Broekaert, W.F., Cammue, B.P.A., De Bolle, M.F.C., Thevissen, K., De Samblanx, G.W. and Osborn, R.W. 1997. Antimicrobial peptides from plants. Crit. Rev. Plant Sci. 16: 297–323.

    Google Scholar 

  • Cammue, B.P.A., De Bolle, M.F.C., Terras, F.R.G., Proost, P., Damme, J.V., Rees, S.B., Vanderleyden, J. and Broekaert, W.F. 1992. Isolation and characterization of a novel class of plant antimicrobial peptides from Mirabilis jalapa L. seeds. J. Biol. Chem. 267: 2228–2233.

    PubMed  Google Scholar 

  • Cammue, B.P.A., De Bolle, M.F.C., Schoofs, H.M.E., Terras, F.R.G., Thevissen, K., Osborn, R.W., Rees, S.B. and Broekaert, W.F. 1994. Gene-encoded antimicrobial peptides from plants. In: Ciba Foundation Symposium 186: Antimicrobial Peptides, John Wiley & Sons, Chichester, UK, pp. 91–106.

    Google Scholar 

  • Chen, H.-C., Brown, J.H., Morell, J.L. and Huang, C.M. 1988. Synthetic magainin analogues with improved antimicrobial activity. FEBS Lett. 236: 462–466.

    PubMed  Google Scholar 

  • Chomczynski, P. and Sacchi, N. 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162: 156–159.

    PubMed  Google Scholar 

  • Couto, M.A., Harwig, S.S.L., Cullor, J.S., Hughes, J.P. and Lehrer, R.I. 1992. Identification of eNAP-1, an antimicrobial peptide from equine neutrophils. Infect. Immun. 60: 3065–3071.

    PubMed  Google Scholar 

  • De Bolle, M.F.C., David, K.M.M., Rees, S.B., Vanderleyden, J., Cammue, B.P.A. and Broekaert, W.F. 1993. Cloning and characterization of a cDNA encoding an antimicrobial chitin-binding protein from amaranth, Amaranthus cadatus. Plant Mol. Biol. 22: 1187–1190.

    PubMed  Google Scholar 

  • De Bolle, M.F.C., Eggermont, K., Duncan, R.E., Osborn, R.W., Terras, F.R.G. and Broekaert, W.F. 1995. Cloning and characterization of two cDNA encoding seed-specific antimicrobial peptides from Mirabilis jalapa L. Plant Mol. Biol. 28: 713–721.

    PubMed  Google Scholar 

  • Dellaporta, S.L., Wood, J. and Hicks, J.B. 1983. A plant DNA minipreparation. Version II. Plant Mol. Biol. Rep. 1: 19–21.

    Google Scholar 

  • de Oliveira, D.E., Seurinck, J., Inzé, D., Van Montagu, M. and Botterman, J. 1990. Differential expression of five Arabidopsis genes encoding glycine-rich proteins. Plant Cell 2: 427–436.

    Article  PubMed  Google Scholar 

  • Dixon, R.A., Dey, P.M. and Lamb, C.J. 1983. Phytoalexins: enzymology and molecular biology. Adv. Enzymol. Relat. Areas Mol. Biol. 55: 1–135.

    PubMed  Google Scholar 

  • Duvick, J.P., Rood, T., Rao, A.G. and Marshak, D.R. 1992. Purification and characterization of a novel antimicrobial peptide from maize (Zea mays L.) kernels. J. Biol. Chem. 267: 18814–18820.

    PubMed  Google Scholar 

  • Ferullo, J.-M., Vézina, L.-P., Rail, J., Laberge, S., Nadeau, P. and Castonguay, Y. 1997. Differential accumulation of two glycine197 rich proteins during cold-acclimation alfalfa. Plant Mol. Biol. 33: 625–633.

    PubMed  Google Scholar 

  • Florack, D.E.A., Dirkse, W.G., Visser, B., Heidekamp, F. and Stiekema, W.J. 1994. Expression of biologically active hordothionins in tobacco. Effects of pre-and pro-sequences at the amino and carboxy termini of the hordothionin precursor on mature protein expression and sorting. Plant Mol. Biol. 24: 83–96.

    PubMed  Google Scholar 

  • Florack, D.E.A. and Stiekema, W.J. 1994. Thionins: properties, possible biological roles and mechanisms of action. Plant Mol. Biol. 26: 25–37.

    PubMed  Google Scholar 

  • Frohman, M.A., Dush, M.K. and Martin, G.R. 1988. Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc. Natl. Acad. Sci. USA 85: 8998–9002.

    PubMed  Google Scholar 

  • Goddemeier, M.L., Wulff, D. and Feix, G. 1998. Root-specific expression of a Zea mays gene encoding a novel glycine-rich protein, zmGRP3. Plant Mol. Biol. 36: 799–802.

    PubMed  Google Scholar 

  • Greenfield, N. and Fasman, G.D. 1969. Computed circular dichroism spectra for the evalution of protein conformation. Biochemistry 8: 4108–4116.

    PubMed  Google Scholar 

  • Gu, Q., Kawata, E.E., Morse, M.J., Wu, H.M. and Cheung, A.Y. 1992. A flower-specific cDNA encoding a novel thionin in tabacco. Mol. Gen. Genet. 234: 89–96.

    PubMed  Google Scholar 

  • Hecker, K.H. and Roux, K.H. 1996. High and low annealing temperatures increase both specificity and yield in touchdown and stepdown PCR. Biotechniques 20: 478–485.

    PubMed  Google Scholar 

  • Iijima, R., Kurata, S. and Natori, S. 1993. Purification, characterization, and cDNA cloning of an antifungal protein from the hemolymph of Sarcophaga peregrina (flesh fly) larvae. J. Biol. Chem. 268: 12055–12061.

    PubMed  Google Scholar 

  • Laberge, S., Castonguay, Y. and Vézina, L.-P. 1993. New coldand drought-regulated gene from Medicago savita. Plant Physiol. 101: 1411–1412.

    PubMed  Google Scholar 

  • Lerner, D.R. and Raikhel, N.V. 1992. The gene for stinging nettle lectin (Urtica dioica agglutinin) encodes both a lectin and a chitinase. J. Biol. Chem. 267: 11085–11091.

    PubMed  Google Scholar 

  • Linthorst, H.J.M., van Loon, L.C., Memelink, J. and Bol, J.F. 1990. Characterization of cDNA clones for a virus-inducible, glycinerich protein from petunia. Plant Mol. Biol. 15: 521–523.

    PubMed  Google Scholar 

  • Luo, M., Liu, J.-H., Mohapatra, S., Hill, R.D. and Mohapatra, S.S. 1992. Characterization of a gene family encoding abscisic acidand environmental stress-inducible proteins of alfalfa. J. Biol. Chem. 267: 15367–15374.

    PubMed  Google Scholar 

  • Lütcke, H.A., Chow, K.C., Mickel, F.S., Moss, K.A., Kern, H.F. and Scheele, G.A. 1987. Selection of AUG initiation codons differs in plants and animals. EMBO J. 6: 43–48.

    PubMed  Google Scholar 

  • Molina, A., Mena, M., Carbonero, P. and García-Olmedo, F. 1997. Differential expression of pathogen-responsive genes encoding two types of glycine-rich proteins in barley. Plant Mol. Biol. 33: 803–810.

    PubMed  Google Scholar 

  • Molina, A., Segura, A. and García-Olmedo, F. 1993. Lipid transfer proteins (nsLTPs) from barley and maize leaves are potent inhibitors of bacterial and fungal plant pathogens. FEBS Lett. 316: 119–122.

    PubMed  Google Scholar 

  • Nakai, K. and Horton, P. 1999. PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem. Sci. 24: 34–35.

    PubMed  Google Scholar 

  • Nicolas, P. and Mor, A. 1995. Peptides as a weapons against microorganisms in the chemical defense system of vertebrates. Annu. Rev. Microbiol. 49: 277–304.

    PubMed  Google Scholar 

  • Nielsen, K.K., Nielsen, J.E., Madrid, S.M. and Mikkelsen, J.D. 1997. Characterization of a new antifungal chitin-binding peptide from sugar beet leaves. Plant Physiol. 113: 83–91.

    PubMed  Google Scholar 

  • Parijs, J.V., Broekaert, W.F., Goldstein, I.J. and Peumans, W.J. 1991. Hevein: an antifungal protein from rubber-tree (Hevea brasiliensis) latex. Planta 183: 258–264

    Google Scholar 

  • Park, C.B., Kim, M.S. and Kim, S.C. 1996. A novel antimicrobial peptide from Bufo bufo gargarizans. Biochem. Biophys. Res. Commun. 218: 408–413.

    PubMed  Google Scholar 

  • Park, C.B., Lee, J.H., Park, I.Y., Kim, M.S. and Kim, S.C. 1997. A novel antimicrobial peptide from the loach, Misgurnus anguillicaudatus. FEBS Lett. 411: 173–178.

    PubMed  Google Scholar 

  • Sambrook, J., Fritsch, E.F. and Maniatis, T. 1989. Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  • Showalter, A.M., Zhou, J., Rumeau, D., Worst, S.G. and Varner, J.E. 1991. Tomato extensin and extensin-like cDNAs: structure and expression in response to wounding. Plant Mol. Biol. 16: 547–565.

    PubMed  Google Scholar 

  • Stintzi, A., Heitz, T., Prasad, V., Wiedemann-Merdinoglu, S., Kauffmann, S., Geoffroy, P., Legrand, M. and Fritig, B. 1993. Plant 'pathogenesis-related' proteins and their role in defense against pathogens. Biochimie 75: 687–706.

    Article  PubMed  Google Scholar 

  • Terras, F.R.G., Schoofs, H.M.E., De Bolle, M.F.C., Leuven, F.V., Rees, S.B., Vanderleyden, J., Cammue, B.P.A. and Broekaert, W.F. 1992. Analysis of two novel classes of plant antifungal proteins from radish (Raphanus sativus L.) seeds. J. Biol. Chem. 267: 15301–15309.

    PubMed  Google Scholar 

  • Terras, F.R.G., Torrekens, S., Leuven, F.V., Osborn, R.W., Vanderleyden, J., Cammue, B.P.A. and Broekaert, W.F. 1993. A new family of basic cysteine-rich antifungal proteins from Brassicaceae species. FEBS Lett. 316: 233–240.

    PubMed  Google Scholar 

  • Vu, L. and Huynh, Q.K. 1994. Isolation and characterization of a 27-kDa antifungal protein from the fruits of Diospyros texana. Biochem. Biophys. Res. Commun. 202: 666–672.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, C.J., Park, C.B., Hong, SS. et al. Characterization and cDNA cloning of two glycine- and histidine-rich antimicrobial peptides from the roots of shepherd's purse, Capsella bursa-pastoris. Plant Mol Biol 44, 187–197 (2000). https://doi.org/10.1023/A:1006431320677

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006431320677

Navigation