Skip to main content
Log in

Geomorphic control of denitrification in large river floodplain soils

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

In this manuscript we investigated the relationshipsbetween the microbiological denitrification process inriver alluvial soils with structures and patterns ofthe floodplain visible at a larger scale. Wehypothesised that both topography and soil grain sizerepresent pertinent environmental factors to forecastdenitrification activity in river floodplain. Thestudy was conducted in 15 alluvial sites along a 30 kmlong stretch of the Garonne River, a seventh-orderstream of the south west of France. Sites wereselected to encompass the widest range possible ofaverage annual flood duration (0.04 to 29 days) andfrequency (return period from 0.6 to 7 years). On anannual basis, we found that average denitrificationrates did not show any significant trend along theflood frequency gradient. Although during the studythe flood frequency and duration was higher than thecalculated average, we did not find any relationshipbetween flood duration and denitrification enzymeactivity. If flood events do not last long enough tomaintain waterlogging conditions conducive to sustaindenitrification activity for long periods, theyindirectly affect the spatial distribution ofdenitrification activity through the sorting out ofsediment deposits. Indeed, we found a significantrelationship between denitrification rates in thefloodplain soils and their texture; highest rates weremeasured in fine textured soils with high silt + claycontent. Below a threshold of 65% of silt and claycontent, the floodplain soils did not present anysignificant denitrification rates. Above thatthreshold denitrification increased linearly. Theseresults demonstrate that alluvial soil texture is alandscape scale factor which has a significant effecton denitrification in floodplains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amato M & Ladd JN (1992) Decomposition of 14C-labelled glucose and legume material in soils: Properties influencing the accumulation of organic residue C and microbial biomass C. Soil Biol. Biochem. 24: 455–464

    Article  Google Scholar 

  • Aulakh MS & Rennie DA (1985) Gaseous nitrogen losses from conventional and chemical summerfallow. Canad. J. Soil Sci. 65(1): 195–203.

    Article  Google Scholar 

  • Bremner JM (1965) Total nitrogen. In: Black CA (Ed) Methods of Soil Analysis, Vol. 9 (pp 1149–1178). Agronomy

  • Brinson MM, Bradshaw HD & Kane ES (1984) Nutrient assimilative capacity of an alluvial flood plain swamp. Journal of Applied Ecology 21: 1041–1057

    Article  Google Scholar 

  • Brunet RC, Pinay G, Gazelle F & Roques L (1994) The role of floodplain and riparian zone in suspended matter and nitrogen retention in the Adour River, southwest France. Regul. Rivers Res. Manag. 9: 55–63

    Article  Google Scholar 

  • Chauvet E (1989) Production, flux et décomposition des litières en milieu alluvial. Dynamique et rôle des hyphomycètes aquatiques dans le processus de décomposition. PhD Thesis, Université Paul Sabatier, Toulouse III, France

  • Chauvet E & Jean-Louis AM (1988) Production de litière de la ripisylve de la Garonne et apport au fleuve. Acta Oecologia, Oecologia Generalis 9: 265–279

    Google Scholar 

  • Davidson EA & Swank WT (1986) Environmental parameters regulating gazeous nitrogen losses from two forested ecosystems via nitrification and denitrification. Appl. Environ. Microbiol. 52(6): 1287–1292

    Google Scholar 

  • Day PR (1965) Particle fractionation and particle-size analysis. In: Black CA (Ed) Methods of Soil Analysis, Vol. 9 (pp 545–567). Agronomy

  • Granli T & Bockman OC (1994) Nitrous oxide from agriculture. Norwegian J. Agricult. Sci. 12(128): 63–72

    Google Scholar 

  • Groffman PM & Tiedje JM (1988) Denitrification hysteresis during wetting and drying cycles in soils. Soil Sci. Soc. Am. J. 52: 1626–1629

    Article  Google Scholar 

  • Groffman PM & Tiedje JM (1989) Denitrification in north temperate forest soils: Relationships between denitrification and environmental factors at the landscape scale. Soil Biol. Biochem. 21: 621–626

    Article  Google Scholar 

  • Groffman PM & Tiedje JM (1991) Relationships between denitrification, CO2 production and air-filled porosity in soils of different texture and drainage. Soil Biol. Biochem. 23(3): 299–303

    Article  Google Scholar 

  • Grubaugh JW & Anderson RV (1989) UpperMississippi River: Seasonal and floodplain forest influences on organic matter transport. Hydrobiologia 174: 235–244

    Article  Google Scholar 

  • Grundmann GL & Rolston DE (1987) A water function approximation to degree of anaerobiosis associated with denitrification. Soil Sci. 144(6): 437–441

    Article  Google Scholar 

  • Hassink J (1994) Effect of soil texture on the size of the microbial biomass and on the amount of C and N mineralized per unit of microbial biomass in Dutch grassland soils. Soil Biol. Biochem. 26(11): 1573–1581

    Article  Google Scholar 

  • He Q & Walling DE (1997) Spatial variability of the particle size composition of overbank floodplain deposits. Water Air Soil Pollut. 99: 71–80

    Google Scholar 

  • Keeney DR (1973) The nitrogen cycle in sediment-water systems. J. Environ. Qual. 2(1): 15–29

    Article  Google Scholar 

  • McClaugherty CA, Pastor J & Aber JD (1985) Forest litter decomposition in relation to soil nitrogen dynamics and litter quality. Ecology 66(1): 266–275

    Article  Google Scholar 

  • Mulholland PJ (1992) Regulation of nutrient concentrations in a temperate forest stream: Roles of upland, riparian, and instream processes. Limnol. Oceanogr. 37(7): 1512–1526

    Article  Google Scholar 

  • Myrold DD & Tiedje JM (1985) Establishment of denitrification capacity in soils: Effects of carbon, nitrate and moisture. Soil Biol. Biochem. 17(6): 819–822

    Article  Google Scholar 

  • Neill C (1995) Seasonal flooding, nitrogen mineralization and nitrogen utilization in a prairie marsh. Biogeochemistry 30: 171–189

    Article  Google Scholar 

  • Parkin TB & Tiedje JM (1984) Application of a soil case method to investigate the effect of oxygen concentration on denitrification. Soil Biol. Biochem. 16(4): 331–331

    Article  Google Scholar 

  • Parton WJ, Mosier AR & Schimel DS (1988) Rates and pathways of nitrous oxide production in a shortgrass steppe. Biogeochemistry 6: 45–58

    Article  Google Scholar 

  • Parsons LL, Murray RE & Smith MS (1991) Soil denitrification dynamics: Spatial and temporal variations of enzyme activity, populations and nitrogen gas loss. Soil Sci. Soc. Am. J. 55: 90–95

    Article  Google Scholar 

  • Pastor J, Aber JD, McClaugherty CA & Melillo JM (1984) Aboveground production and N and P cycling along a nitrogen mineralization gradient on Blackhawk island, Wisconsin. Ecology 65(1): 256–268

    Article  Google Scholar 

  • Patrick WH Jr (1982) Nitrogen transformations in submerged soils. In: Stevenson FJ (Ed) Nitrogen in Agricultural Soils, Vol. 22 (pp 449–465). Agronomy Monograph

  • Pinay G, Décamps H, Arles C & Lacassin-Seres M (1989) Topographic influence on carbon and nitrogen dynamics in riverine woods. Arch. Hydrobiol. 114(3): 401–414

    Google Scholar 

  • Pinay G & Naiman RJ (1991) Short-term hydrologic variations and nitrogen dynamics in beaver created meadows. Arch. Hydrobiol. 123(2): 187–205

    Google Scholar 

  • Pinay G, Ruffinoni C & Fabre A (1995) Nitrogen cycling in two riparian forest soils under different geomorphic conditions. Biogeochemistry 30(9): 9–29

    Article  Google Scholar 

  • Ponnamperuma FN (1972) The chemistry of submerged soils. Advances in Agronomys 24: 29–96

    Article  Google Scholar 

  • Reddy KR & Patrick WH Jr (1975) Effect of alternate aerobic and anaerobic conditions on redox potential, organic matter decomposition and nitrogen loss in a flooded soil. Soil Biol. Biochem. 7: 87–94

    Article  Google Scholar 

  • Roberts J & Ludwig JA (1991) Riparian vegetation along current-exposure gradients in floodplain wetlands of the River Murray, Australia. J. Ecol. 79: 117–127

    Article  Google Scholar 

  • Rolston DE, Rao PSC, Davidson JM & Jessup RE (1984) Simulation of denitrification losses of nitrate fertilizer applied to uncropped, cropped and manure-amended field plots. Soil Sci. 137: 270–279

    Article  Google Scholar 

  • Salo J, Kalliola R, Häkkinen J, Mäkinen Y, Niemelä P, Puhakka M & Coley PB (1986) River dynamics and the diversity of Amazon lowland forest. Nature 332: 254–258

    Article  Google Scholar 

  • Schlesinger WH, Raikes JA, Hartley AE & Cross AF (1996) On the spatial pattern of soil nutrients in desert ecosystems. Ecology 77(2): 364–374

    Article  Google Scholar 

  • Schimel D, Stillwell MR & Woodmansee RG (1985) Biochemistry of C, N and P in a soil catena of the shortgrass steppe. Ecology 66(1): 276–282

    Article  Google Scholar 

  • Seely B, Lajtha K & Salvucci GD (1998) Transformation and retention of nitrogen in a coastal forest ecosystem. Biogeochemistry 42: 325–343

    Article  Google Scholar 

  • Smepag (1989) Monographie des crues de la Garonne. Compagnie d'Aménagement des Coteaux de Gascogne Ed

  • Smith JL & Tiedje JM (1979) Phases of denitrification following oxygen depletion in soils. Soil Biol. Biochem. 11: 261–267

    Article  Google Scholar 

  • Steiger J (1991) La dynamique fluviale de la Garonne entre Saint Caprais et Verdun sur Garonne. D.E.A. de Géographie et Aménagement, University of Toulouse le Mirail

  • Sullivan KT, Lisle CA, Dollof GE & Reid IM (1987) Stream channels: The links between forests and fishes. In: Salo EO & Cundy TW (Eds) Streamside Management: Forestry and Fishery Interactions. University ofWashington, Institute of Forest Resources, Contribution No. 57, Seattle,WA.

  • Tabacchi E (1992) Variabilité des peuplements riverains de l'Adour. Influence de la dynamique fluviale à différentes échelles d'espace et de temps. PhD Dissertation, University of Toulouse III

  • Tabacchi E, Planty-Tabacchi AM & Décamps O (1990) Continuity and discontinuity of the riparian vegetation along a fluvial corridor. Landscape Ecol. 5: 9–20

    Article  Google Scholar 

  • Tabacchi E, Correll DL, Hauer R, Pinay G, Planty-Tabacchi AM & Wissmar RC (1998) Development, maintenance and role of riparian vegetation in the river landscape. Freshwater Biol. 40(1): 1–21

    Article  Google Scholar 

  • Technicon (1976) Technicon Instrument System. Technicon Method Guide. Technicon, Tarrytown, New York.

    Google Scholar 

  • Vomocil JA (1965) Porosity. In: CA Black (Ed) Methods of Soil Analysis. Part 1: Physical andMineralogical Properties, Including Statistics ofMeasurement and Sampling (pp 299–314). ASA Inc. Publ., Madison, WI, U.S.A.

    Google Scholar 

  • Ward JV (1989) The four dimentional nature of lotic ecosystems. J. North Benthological America Society 8(1): 2–8

    Article  Google Scholar 

  • Waring SA & Bremner JM (1964) Ammonium production in soil under waterlogged conditions as an index of nitrogen availability. Nature 201: 951–952

    Article  Google Scholar 

  • Yoshinari T & Knowles R (1976) Acetylene inhibition of nitrous oxide reduction by denitrifying bacteria. Biochem. Biophys. Res. Comm. 69: 705–710

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinay, G., Black, V., Planty-Tabacchi, A. et al. Geomorphic control of denitrification in large river floodplain soils. Biogeochemistry 50, 163–182 (2000). https://doi.org/10.1023/A:1006317004639

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006317004639

Navigation