Skip to main content
Log in

Characterization of processes responsible for the distinct effect of herbicides DCMU and BNT on Photosystem II photoinactivation in cells of the cyanobacterium Synechococcus sp. PCC 7942

  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Light-induced modification of Photosystem II (PS II) complex was characterized in the cyanobacterium Synechococcus sp. PCC 7942 treated with either DCMU (a phenylurea PS II inhibitor) or BNT (a phenolic PS II inhibitor). The irradiance response of photoinactivation of PS II oxygen evolution indicated a BNT-specific photoinhibition that saturated at relatively low intensity of light. This BNT-specific process was slowed down under anaerobiosis, was accompanied by the oxygen-dependent formation of a 39 kDa D1 protein adduct, and was not related to stable QA reduction or the ADRY effect. In the BNT-treated cells, the light-induced, oxygen-independent initial drop of PS II electron flow was not affected by formate, an anion modifying properties of the PS II non-heme iron. For DCMU-treated cells, anaerobiosis did not significantly affect PS II photoinactivation, the D1 adduct was not observed and addition of formate induced similar initial decrease of PS II electron flow as in the BNT-treated cells. Our results indicate that reactive oxygen species (most likely singlet oxygen) and modification of the PS II acceptor side are responsible for the fast BNT-induced photoinactivation of PS II.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson JM, Park IY and Soon WS (1998) Unifying model for the photoinactivation of Photosystem II in vivo under steady-state photosynthesis. Photosynth Res 56: 1–13

    Article  CAS  Google Scholar 

  • Aro E-M, Virgin I and Andersson B (1993) Photoinhibition of Photosystem II. Inactivation, protein damage and turnover. Biochim Biophys Acta 1143: 113–134

    Article  PubMed  CAS  Google Scholar 

  • Barbato R, Friso G, Rigoni F, Frizzo A and Giacometti GM (1992) Characterization of a 41-kDa photoinhibition adduct in isolated Photosystem-II reaction centres. FEBS Lett 309: 165–169

    Article  PubMed  CAS  Google Scholar 

  • Barber J (1994) Molecular basis of the vulnerability of Photosystem II to damage by light. Aust J Plant Physiol 22: 201–208

    Article  Google Scholar 

  • Bartoš J, Berková E and Šetlík I (1975) A versatile chamber for gas exchange measurements in suspensions of algae and chloroplasts. Photosynthetica 9: 395–406

    Google Scholar 

  • Blubaugh DJ, Atamian M, Babcock TG, Golbeck JH and Cheniae GM (1991) Photoinhibition of hydroxylamine-extracted photosystem-II membranes — identification of the sites of photodamage. Biochemistry 30: 7586–7597

    Article  PubMed  CAS  Google Scholar 

  • Clarke AK, Hurry VM, Gustafsson P and Öquist G (1993) Two functionally distinct forms of the Photosystem II reaction-center protein D1 in the cyanobacterium Synechococcus sp. PCC7942. Proc Natl Acad Sci USA 90: 11985–11989

    Article  PubMed  CAS  Google Scholar 

  • Diner BA and Babcock GT (1996) Structure, dynamics and energy conversion efficiency in Photosystem II. In: Ort DR and Yocum CF (eds) Oxygenic Photosynthesis: The Light Reactions, pp 213–247. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Diner BA and Petrouleas V (1987) Q400, the non-heme iron of the photosystem II iron quinone complex. A spectroscopic probe of quinone and inhibitor binding to the reaction center. Biochim Biophys Acta 895: 107–125

    CAS  Google Scholar 

  • Inoue Y (1996) Photosynthetic thermoluminescence as a simple probe of Photosystem II electron transport. In: Amesz J and Hoff AJ (eds) Biophysical Techniques in Photosynthesis, pp 93–107. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Keren N, Berg A, Van Kan PJM, Levanon H and Ohad I (1997) Mechanism of Photosystem II photoinactivation and D1 protein degradation at low-light — the role of back electron flow. Proc Natl Acad Sci USA 94: 1579–1584

    Article  PubMed  CAS  Google Scholar 

  • Kirilovsky D, Rutherford AW and Etienne A-L (1994) Influence of DCMU and ferricyanide on photodamage in Photosystem II. Biochemistry 33: 3087–3095

    Article  PubMed  CAS  Google Scholar 

  • Kirilovsky D, Vernotte C and Etienne A-L (1990) Protection from photoinhibition by low temperature in Synechocystis 6714 and in Chlamydomonas reinhardtii: Detection of an intermediary state. Biochemistry 29: 8100–8106

    Article  PubMed  CAS  Google Scholar 

  • Komenda J (1998) Photosystem-II photoinactivation and repair in the Scenedesmus cells treated with herbicides DCMU and BNT and exposed to high irradiance. Photosynthetica 35: 477–480

    Article  CAS  Google Scholar 

  • Komenda J and Masojídek J (1995) Structural changes of Photosystem II complex induced by high irradiance in cyanobacterial cells. Eur J Biochem 233: 677–682

    Article  PubMed  CAS  Google Scholar 

  • Komenda J and Masojídek J (1998) The effect of Photosystem II inhibitors DCMU and BNT on the high-light induced D1 turnover in two cyanobacterial strains Synechocystis PCC 6803 and Synechococcus PCC 7942. Photosynth Res 57: 193–202

    Article  CAS  Google Scholar 

  • Kratz WA and Myers T (1955) Nutrition and growth of several bluegreen algae. Am J Bot 42: 282–287

    Article  CAS  Google Scholar 

  • Krieger-Liszkay A and Rutherford AW (1998) Influence of herbicide binding on the redox potential of the quinone acceptor in Photosystem II: Relevance to photodamage and phytotoxicity. Biochemistry 37: 17339–17344

    Article  PubMed  CAS  Google Scholar 

  • Kyle DJ, Ohad I and Arntzen J (1984) Membrane protein damage and repair: Selective loss of a quinone-protein function in chloroplast membranes. Proc Natl Acad Sci USA 81: 4070–4074

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685

    Article  PubMed  CAS  Google Scholar 

  • Mathis P and Rutherford AW (1984) Effect of phenolic herbicides on the oxygen-evolving side of Photosystem II. Formation on the carotenoid cation. FEBS Lett 165: 156–161

    Google Scholar 

  • Miyao M, Ikeuchi M, Yamamoto N and Ono T (1995) Specific degradation of the D1 protein of Photosystem-II by treatment with hydrogen-peroxide in darkness — implications for the mechanism of degradation of the D1 protein under illumination. Biochemistry 34: 10019–100026

    Article  PubMed  CAS  Google Scholar 

  • Mullineaux CW and Allen JF (1990) State-1—State-2 transitions in the cyanobacterium Synechococcus 6301 are controlled by the redox state of electron carriers between Photosystem-I and Photosystem-II. Photosynth Res 23: 297–311

    Article  CAS  Google Scholar 

  • Nakajima Y, Yoshida S and Ono T (1996) Differential effects of urea/triazine-type and phenol-type Photosystem II inhibitors on inactivation of the electron transport and degradation of the D1 protein during photoinhibition. Plant Cell Physiol 37: 673–680

    CAS  Google Scholar 

  • Nanba O and Satoh K (1987) Isolation of a PS II reaction center consisting of D1 and D2 polypeptides and cytochrome b-559. Proc Natl Acad Sci USA 84, 109–112

    Article  PubMed  CAS  Google Scholar 

  • Napiwotzki A, Bergmann A, Decker K, Legall H, Eckert H-J, Eichler H-J and Renger G (1997) Acceptor side photoinhibition 144 in PS-II — on the possible effects of the functional integrity of the PS-II donor side on photoinhibition of stable charge separation. Photosynth Res 52: 199–213

    Article  CAS  Google Scholar 

  • Nedbal L, Šetlíková E, Masojídek J and Šetlík I (1986) The nature of photoinhibition in isolated thylakoids. Biochim Biophys Acta 848: 108–119

    Article  CAS  Google Scholar 

  • Nixon PJ, Komenda J, Barber J, Deak S, Vass I and Diner BA (1995) Deletion of the PEST-like region of Photosystem II modifies the QB-binding pocket but does not prevent rapid turnover of D1. J Biol Chem 270: 14919–14927

    Article  PubMed  CAS  Google Scholar 

  • Pfister K, Steinback KK, Gardner G and Arntzen CJ (1981) Photoaffinity labeling of a herbicide receptor in chloroplast membranes. Proc Natl Acad Sci USA 78: 981–985

    Article  PubMed  CAS  Google Scholar 

  • Prášil O, Adir A and Ohad I (1992) Dynamics of Photosystem II: Mechanism of Photoinhibition and Recovery Process. In: Barber J (ed) Topics in Photosynthesis, Vol 11, pp 295–348. Elsevier Science, Amsterdam

    Google Scholar 

  • Prášil O, Kolber Z, Berry JA and Falkowski PG (1996) Cyclic electron flow around Photosystem-II in-vivo. Photosynth Res 48: 395–410

    Article  Google Scholar 

  • Rutherford AW, Zimmermann LJ and Mathis P (1984) The effect of herbicides on components of the PS II reaction centre measured by EPR. Biochim Biophys Acta 767: 217–222

    Article  Google Scholar 

  • Sopory SK, Greenberg BM, Mehta RA, Edelman M and Mattoo AK (1990) Free radical scavengers inhibit Light-dependent degradation of the 32-kDa Photosystem-II reaction center protein. Z Naturforsch 45c: 412–417

    Google Scholar 

  • Šetlík I, Allakhverdiev SI, Nedbal L, Šetlíková E and Klimov VV (1990) Three types of Photosystem II photoinactivation. 1. Damaging processes on the acceptor side. Photosynth Res 23: 39–48

    Article  Google Scholar 

  • Telfer A, Bishop SM, Phillips D and Barber J (1994) Isolated photosynthetic reaction center of Photosystem II as a sensitizer for the formation of singlet oxygen. J Biol Chem 269: 13244–13253

    PubMed  CAS  Google Scholar 

  • Trebst A (1987) The three-dimensional structure of the herbicide binding niche on the reaction center polypeptides of Photosystem II. Naturforsch 42c: 742–750

    Google Scholar 

  • Trebst A, Hilp U and Draber W (1993) Response in the inhibitor efficiency of substituted phenols on PS II activity in 6 mutants of the D1 protein subunit in Chlamydomonas reinhardtii. Phytochemistry 33: 969–977

    Article  CAS  Google Scholar 

  • Tyystjärvi E and Aro E-M (1996) The rate-constant of photoinhibition, measured in lincomycin-treated leaves, is directly proportional to light-intensity. Proc Natl Acad Sci USA 93: 2213–2218

    Article  PubMed  Google Scholar 

  • Van der Bolt F and Vermaas W (1992) Photoinactivation of Photosystem II as studied with site directed D2 mutants of the cyanobacterium Synechocystis sp. PCC 6803. Biochim Biophys Acta 1098: 247–254

    CAS  Google Scholar 

  • Vass I, Styring S, Hundal T, Koivuniemi A, Aro E-M and Andersson B (1992) Reversible and irreversible intermediates during photoinhibition of Photosystem II — stable reduced QA species promote chlorophyll triplet formation. Proc Nat Acad Sci USA 89: 1408–1412

    Article  PubMed  CAS  Google Scholar 

  • Zer H and Ohad I (1995) Photoinactivation of Photosystem II induces changes in the photochemical reaction center abolishing the regulatory role of the QB site in the D1 protein degradation. Eur J Biochem 231: 448–453

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Komenda, J., Koblížek, M. & Prášil, O. Characterization of processes responsible for the distinct effect of herbicides DCMU and BNT on Photosystem II photoinactivation in cells of the cyanobacterium Synechococcus sp. PCC 7942. Photosynthesis Research 63, 135–144 (2000). https://doi.org/10.1023/A:1006307417977

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006307417977

Navigation