Skip to main content
Log in

Products and Mechanism of the Gas Phase Reaction of Ozone with β-Pinene

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

Gas phase ozonolysis of β-pinene was performedin a 570 l static reactor at 730 Torr and 296 K insynthetic air and the products were analysed by acombination of gas phase FTIR spectroscopy, HPLC andIC analyses of gas phase and aerosol samples,respectively. The reaction mechanism was investigatedby adding HCHO, HCOOH and H2O as Criegeeintermediate scavenger and cyclohexane as OH radicalscavenger. Main identified products (yields inparentheses) in the presence of cyclohexane as OHradical scavenger were HCHO (0.65 ± 0.04),nopinone (0.16 ± 0.04), 3-hydroxy-nopinone (0.15± 0.05), CO2 (0.20 ± 0.04), CO (0.030± 0.002), HCOOH (0.020 ± 0.002), the secondaryozonide of β-pinene (0.16 ± 0.05), andcis-pinic acid (0.02 ± 0.01). The decompositionof the primary ozonide was found to yieldpredominantly the excited C9-Criegee intermediateand HCHO (0.84 ± 0.04) and to a minor extent theexcited CH2OO intermediate and nopinone (0.16± 0.04). Roughly 40% of the excitedC9-Criegee intermediate becomes stabilised andcould be shown to react with HCHO, HCOOH and H2O. The atmospherically important reaction of thestabilised C9-Criegee intermediate with H2Owas found to result in a nopinone increase of (0.35± 0.05) and in the formation of H2O2(0.24 ± 0.03). Based on the observed products,the unimolecular decomposition/isomerisationchannels of the C9-Criegee intermediate arediscussed in terms of the hydroperoxide and esterchannels. Subsequent reactions of the nopinonylradical, formed in the hydroperoxide channel, lead tomajor products like 3-hydroxy-nopinone but also tominor products like cis-pinic acid. A mechanismfor the formation of this dicarboxylic acid isproposed and its possible role in aerosol formationprocesses discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alvarado, A., Tuazon, E. C., Aschmann, S. M., Atkinson, R., and Arey, J., 1998: Products of the gas-phase reactions of O(3P) atoms and O3 with alpha-pinene and 1,2-dimethyl-1-cyclohexene, J. Geophys. Res. 103, 25541-25551.

    Google Scholar 

  • Andrews, E., Kreidenweis, S. M., Penner, J. E., and Larson, S. M., 1997: Potential origin of organic cloud condensation nuclei observed at marine site, J. Geophys. Res. 102, 21997-22012.

    Google Scholar 

  • Arey, J., Winer, A. M., Atkinson, R., Aschmann, S. M., Long, W. D., Morrison, C. L., and Olszyk, D. M., 1991: Terpenes emitted from agricultural species found in California's central valley, J. Geophys. Res. 96, 9329-9336.

    Google Scholar 

  • Arora, P. K., Chatha, J. P. S., and Vohra, K. G., 1983: Gas-phase chemiluminescent reactions of ozone with monoterpenes, Chem. Phys. Lett. 100, 93-98.

    Google Scholar 

  • Atkinson, R., 1994: Gas-phase tropospheric chemistry of organic compounds, J. Phys. Chem. Ref. Data, Monograph 2, pp. 1-216.

  • Atkinson, R., 1997: Gas-phase tropospheric chemistry of volatile organic compounds: 1. Alkanes and alkenes, J. Phys. Chem. Ref. Data 26, 215-290.

    Google Scholar 

  • Atkinson, R., Aschmann, S. M., Arey, J., and Shorees, B., 1992: Formation of OH radicals in the gas phase reactions of O3 with a series of terpenes, J. Geophys. Res. 97, 6065-6073.

    Google Scholar 

  • Atkinson, R., Aschmann, S. M., Arey, J., and Tuazon, E. C., 1994: Formation yields of epoxides and O(3P) atoms from the gas-phase reaction of O3 with a series of alkenes, Int. J. Chem. Kin. 26, 945-950.

    Google Scholar 

  • Bach, R. D., Ayala, P. Y., and Schlegel, H. B., 1996: A reassessment of the bond dissociation energies of peroxides, An ab initio study, J. Am. Chem. Soc. 118, 12758-12765.

    Google Scholar 

  • Becker, K. H., Bechara, J., and Brockmann, K. J., 1993: Studies on the formation of H2O2 in the ozonolysis of alkenes, Atmos. Environ. 27A, 57-61.

    Google Scholar 

  • Becker, K. H., Brockmann, K. J., and Bechara, J., 1990: Production of hydrogen peroxide in forest air by reaction of ozone with terpenes, Nature 346, 256-258.

    Google Scholar 

  • Bertin, N., Staudt, M., Hansen, U., Seufert, G., Ciccioli, P., Foster, P., Fugit, J. L., and Torres, L., 1997: Diurnal and seasonal course of monoterpene emissions from Quercus Ilex (L.) under natural conditions-Applications of light and temperature algorithms, Atmos. Environ. 31, 135-144.

    Google Scholar 

  • Burrows, J. P., Moortgat, G. K., Tyndall, G. S., Cox, R. A., Jenkin, M. E., Hayman, G. D., and Veyret, B., 1989: Kinetics and mechanism of the photooxidation of formaldehyde. 2. Molecular modulation studies, J. Phys. Chem. 93, 2375-2382.

    Google Scholar 

  • Christoffersen, T. S., Hjorth, J., Horie, O., Jensen, N. R., Kotzias, D., Molander, L. L., Neeb, P., Ruppert, L., Winterhalter, R., Virkkula, A., Wirtz, K., and Larsen, B. R., 1998: cis-Pinic acid, a possible precursor for organic aerosol formation from ozonolysis of alpha-pinene, Atmos. Environ. 32, 1657-1661.

    Google Scholar 

  • Criegee, R., 1975: Mechanismus der Ozonolyse, Angew. Chem. 87, 765-771.

    Google Scholar 

  • Dallwigk, E., Susz, B., and Briner, E., 1952: Recherches sur les spectres d'absorption infrarouges des ozonides. III. Détermination des spectres d' absorption infrarouges des ozonides de l'anéthol, du méthylisoeugénol, du benzène, du naphtalène, du cyclohèxene, du limonène, du caryophyllène, du nopinène et des maléate et fumarate d'éthyle, Helv. Chim. Acta 35, 353-362.

    Google Scholar 

  • DeMore, W. B., Sander, S. P., Howard, C. J., Ravishankara, A. R., Golden, D. M., Kolb, C. E., Hampson, R. F., Kurylo, M. J., and Molina, M. J., 1997: Chemical Kinetics and photochemical data for use in stratospheric modelling, JPL Publication, 97-4.

  • Finkbeiner, M., Neeb, P., Horie, O., and Moortgat, G. K., 1995: A method of calibration of the formic acid monomer concentration in the gas phase, Fresenius J. Anal. Chem. 351, 521-525.

    Google Scholar 

  • François, H. and Josien, M. L., 1959: Étude par spectroscopie infrarouge des vibrations de valence des groupements carbonyles et hydroxyles des acides dl-pinanique, dl-pinolique, dl-pinonique, dl-pinique et de leurs esters, Bull. Soc. Chim. Fr., 1606-1609.

  • Gäb, S., Turner, W. V., Wolff, S., Becker, K. H., Ruppert, L., and Brockmann, K. J., 1995: Formation of alkyl and hydroxyalkyl hydroperoxides on ozonolysis in water and in air, Atmos. Environ. 29, 2401-2407.

    Google Scholar 

  • Glasius, M., Lahaniati, M., Calogirou, A., Jensen, N. R., Hjorth, J., Kotzias, D., and Larsen, B. R., 1998: Carboxylic acids in secondary aerosols from O3 and OH oxidation of cyclic monoterpenes, in P. M. Borrell and P. Borrell, EUROTRAC-2 Symposium 1998, Garmisch-Partenkirchen, Germany.

    Google Scholar 

  • Griesbaum, K., Hilß, M., and Bosch, J., 1996: Ozonides of mono-, bi-and tricyclic terpenes, Tetrahedron 52, 14813-14826.

    Google Scholar 

  • Griesbaum, K., Miclaus, V., and Jung, I. C., 1998: Isolation of ozonides from gas-phase ozonolyses of terpenes, Environ. Sci. Technol. 32, 647-649.

    Google Scholar 

  • Grosjean, D., Williams, E. L., II, Grosjean, E., Andino, J. M., and Seinfeld, J. H., 1993: Atmospheric oxidation of biogenic hydrocarbons: Reactions of ozone with β-pinene, d-limonene and trans-caryophyllene, Environ. Sci. Technol. 27, 2754-2758.

    Google Scholar 

  • Guenther, A., Hewitt, N. C., Erickson, D., Fall, R., Geron, C., Graedel, T., Harley, P., Klinger, L., Lerdau, M., McKay, W. A., Pierce, T., Scholes, B., Steinbrecher, R., Tallamraju, R., Taylor, J., and Zimmerman, P., 1995: A global model of natural volatile organic compound emissions, J. Geophys. Res. 100, 8873-8892.

    Google Scholar 

  • Gutbrod, R., Schindler, R. N., Kraka, E., and Cremer, D., 1996: Formation of OH radicals in the gas phase ozonolysis of alkenes: The unexpected role of carbonyl oxides, Chem. Phys. Lett. 252, 221-229.

    Google Scholar 

  • Hakola, H., Arey, J., Aschmann, S. M., and Atkinson, R., 1994: Product formation from the gas phase reactions of OH radicals and O3 with a series of monoterpenes, J. Atmos. Chem. 18, 75-102.

    Google Scholar 

  • Hatakeyama, S., Izumi, K., Fukuyama, T., and Akimoto, H., 1989: Reactions of ozone with alphapinene and beta-pinene in air: Yields of gaseous and particulate products, J. Geophys. Res. 94, 13013-13024.

    Google Scholar 

  • Hatakeyama, S., Izumi, K., Fukuyama, T., Akimoto, H., and Washida, N., 1991: Reactions of OH with alpha-pinene and beta-pinene in air: Estimate of global CO production from the atmospheric oxidation of terpenes, J. Geophys. Res. 96, 947-958.

    Google Scholar 

  • Hatakeyama, S., Kobayashi, H., and Akimoto, H., 1984: Gas-phase oxidation of SO2 in the ozoneolefin reactions, J. Phys. Chem. 88, 4736-4739.

    Google Scholar 

  • Hatakeyama, S., Tanonaka, T., Weng, H. H., Bandow, H., Takagi, H., and Akimoto, H., 1985: Ozone-cyclohexene reaction in air: Quantitative analysis of particulate products and the reaction mechanism, Environ. Sci. Technol. 19, 935-942.

    Google Scholar 

  • Hellpointner, E., and Gäb, S., 1989: Detection of methyl, hydroxymethyl and hydroxyethyl hydroperoxides in air and precipitation, Nature 337, 631-634.

    Google Scholar 

  • Hewitt, C. N., and Kok, G. L., 1991: Formation and occurrence of organic hydroperoxides in the troposphere: Laboratory and field observations, J. Atmos. Chem. 12, 181-194.

    Google Scholar 

  • Hoffmann, T., Bandur, R., Marggraf, U., and Linscheid, M., 1998: Molecular composition of organic aerosols formed in the α-pinene/O3 reaction: Implications for new particle formation processes, J. Geophys. Res. 103, 25569-25578.

    Google Scholar 

  • Hoffmann, T., Odum, J., Bowman, F., Collins, D., Klockow, D., Flagan, R. C., and Seinfeld, J. H., 1997: Formation of organic aerosols from the oxidation of biogenic hydrocarbons, J. Atmos. Chem. 26, 189-222.

    Google Scholar 

  • Hofmann, U., Weller, D., Ammann, C., Jork, E., and Kesselmeier, J., 1997: Cryogenic trapping of atmospheric organic acids under laboratory and field conditions, Atmos. Environ. 31, 1275-1284.

    Google Scholar 

  • Horie, O. and Moortgat, G. K., 1991: Decomposition pathways of the excited Criegee intermediates in the ozonolysis of simple alkenes, Atmos. Environ. 25A, 1881-1896.

    Google Scholar 

  • Horie, O., Neeb, P., and Moortgat, G. K., 1997: The reactions of the Criegee-intermediate CH3CHOO in the gas-phase ozonolysis of 2-butene isomers, Int. J. Chem. Kin. 29, 461-468.

    Google Scholar 

  • Hull, L. A., 1981: Terpene ozonolysis products, in J. J. Bufalini and R. R. Arnts (eds), Atmospheric biogenic hydrocarbons, Ann Arbor Science, pp. 161-184.

  • Izumi, K., Murano, K., Mizuochi, M., and Fukuyama, T., 1988: Aerosol formation by the photooxidation of cyclohexene in the presence of nitrogen oxides, Environ. Sci. Technol. 22, 1207-1215.

    Google Scholar 

  • Jay, K. and Stieglitz, L., 1987: Product analysis of the chemical/photochemical conversion of monoterpenes with airborne pollutants (O3/NO2), in P. Mathy, (ed.), Air Pollution and Ecosystems, 542-547.

  • Jay, K. and Stieglitz, L., 1989: Gas phase ozonolysis of camphene in the presence of SO2, Atmos. Environ. 23, 1219-1221.

    Google Scholar 

  • Jenkin, M. E., Cox, R. A., Emrich, M., and Moortgat, G. K., 1993: Mechanisms of the Cl-atominitiated oxidation of acetone and hydroxyaxetone in air, J. Chem. Soc. Faraday Trans. 89, 2983-2991.

    Google Scholar 

  • Kotzias, D., Fytianos, K., and Geiss, F., 1990: Reaction of monoterpenes with ozone, sulphur dioxide and nitrogen dioxide-Gas-phase oxidation of SO2 and formation of sulphuric acid, Atmos. Environ. 24 A, 2127-2132.

    Google Scholar 

  • Krc, J., 1953: dl-Pinic acid, Anal. Chem. 25, 1420-1521.

    Google Scholar 

  • Lazrus, A. L., Kok, G. L., Lind, J. A., Gitlin, S. N., Heikes, B. G., and Shetter, R. E., 1986: Automated fluormetric method for hydrogen peroxide in air, Anal. Chem. 58, 594-597.

    Google Scholar 

  • Mäkelä, J. M., Aalto, P., Jokinen, V., Phoja, T., Nissinen, A., Palmroth, S., Markkanen, T., Seitsonen, K., Lihavainen, H., and Kulmala, M., 1997: Observations of ultrafine aerosol particle formation and growth in boreal forest, Geophys. Res. Lett. 24, 1219-1222.

    Google Scholar 

  • Marti, J. J., Weber, R. J., McMurry, P. H., Eisele, F., Tanner, D., and Jefferson, A., 1997: New particle formation at a remote continental site-Assessing the contributions of SO2 and organic precursors, J. Geophys. Res. 102, 6331-6339.

    Google Scholar 

  • Martinez, R. I. and Herron, J. T., 1987: Stopped-flow studies of the mechanisms of ozone-alkene reactions in the gas phase: Tetramethylethylene, J. Phys. Chem. 91, 946-53.

    Google Scholar 

  • Moortgat, G. K., Veyret, B., and Lesclaux, R., 1989a: Absorption spectrum and kinetics of reactions of the acetylperoxy radical, J. Phys. Chem. 93, 2362-2368.

    Google Scholar 

  • Moortgat, G. K., Veyret, B., and Lesclaux, R., 1989b: Kinetics of the reaction of HO2 with CH3C(O)O2 in the temperature range 253-368 K, Chem. Phys. Lett. 160, 443-447.

    Google Scholar 

  • Müller, J.-F., 1992: Geographical distribution and seasonal variation of surface emissions and deposition velocities of atmospheric trace gases, J. Geophys. Res. 97, 3787-3804.

    Google Scholar 

  • Neeb, P., Horie, O., and Moortgat, G. K., 1996a: Formation of secondary ozonides in the gas-phase ozonolysis of simple alkenes, Tetrahedron Letters 37, 9297-9300.

    Google Scholar 

  • Neeb, P., Horie, O., and Moortgat, G. K., 1996b: Gas-phase ozonolysis of ethene in the presence of hydroxylic compounds, Int. J. Chem. Kin. 28, 721-730.

    Google Scholar 

  • Neeb, P., Horie, O., and Moortgat, G. K., 1998: The ethene-ozone reaction in the gas phase, J. Phys. Chem. 102, 6778-6785.

    Google Scholar 

  • Neeb, P., Sauer, F., Horie, O., and Moortgat, G. K., 1997: Formation of hydroxymethyl hydroperoxide and formic acid in alkene ozonolysis in the presence of water vapour, Atmos. Environ. 31, 1417-1423.

    Google Scholar 

  • Niki, H., Maker, P. D., Savage, C. M., Breitenbach, L. P., and Hurley, M. D., 1987: FTIR spectroscopic study of the mechanism for the gas-phase reaction between ozone and tetramethylethylene, J. Phys. Chem. 91, 941-946.

    Google Scholar 

  • Novakov, T. and Penner, J. E., 1993: Large contribution of organic aerosols to cloud-condensation-nuclei concentrations, Nature 365, 823-826.

    Google Scholar 

  • Owen, S., Boissard, C., Street, R. A., Duckham, S. C., Csiky, O., and Hewitt, C. N., 1997: Screening of 18 mediterranean plant species for volatile organic compound emissions, Atmos. Environ. 31, 101-117.

    Google Scholar 

  • Palen, E. J., Allen, D. T., Pandis, S. N., Paulson, S. E., Seinfeld, J. H., and Flagan, R. C., 1992: Fourier transform infrared analysis of aerosol formed in the photooxidation of isoprene and ?-pinene, Atmos. Environ. 26A, 1239-1251.

    Google Scholar 

  • Phillips, B., Frostick, F. C., and Starcher, P. S., 1957: A new synthesis of peracetic acid, J. Am. Chem. Soc. 79, 5982-5986.

    Google Scholar 

  • Rocklin, R. D., Pohl, C. A., and Schibler, J. A., 1987: Gradient elution in ion chromatography, J. Chromatogr. 411, 107-119.

    Google Scholar 

  • Sauer, F., Schäfer, C., Neeb, P., Horie, O., and Moortgat, G. K., 1999: Formation of hydrogen peroxide in the ozonolysis of isoprene and simple alkenes under humid conditions, Atmos. Environ. 33, 229-241.

    Google Scholar 

  • Schuetzle, D. and Rasmussen, R. A., 1978: The molecular composition of secondary aerosol particles formed from terpenes, J. Air Pollut. Control Assoc. 28, 236-240.

    Google Scholar 

  • Simonaitis, R., Olszyna, K. J., and Meagher, J. F., 1991: Production of hydrogen peroxide and organic peroxides in the gas phase reactions of ozone with natural alkenes, Geophys. Res. Lett. 18, 9-12.

    Google Scholar 

  • Street, R. A., Owen, S., Duckham, S. C., Boissard, C., and Hewitt, C. N., 1997: Effect of habitat and age on variations in volatile organic compound (VOC) emissions from Quercus Ilex and Pinus Pinea, Atmos. Environ. 31, 89-100.

    Google Scholar 

  • Su, F., Calvert, J. G., and Shaw, J. H., 1980: A FTIR spectroscopic study of the ozone-ethene reaction mechanism in O2-rich mixtures, J. Phys. Chem. 84, 239-246.

    Google Scholar 

  • Tao, Y. and McMurry, H., 1989: Vapor pressures and surface free energies of C14-C18 monocarboxylic acids and C5 and C6 dicarboxylic acids, Environ. Sci. Technol. 23, 1519-1523.

    Google Scholar 

  • Veyret, B., Lesclaux, R., Rayez, M.-T., Tyndall, G. S., Cox, R. A., and Moortgat, G. K., 1989: Kinetics and mechanism of the photooxidation of formaldehyde. 1. Flash photolysis study, J. Phys. Chem. 93, 2368-2374.

    Google Scholar 

  • Went, F. W., 1960: Blue hazes in the atmosphere, Nature 187, 641-643.

    Google Scholar 

  • Went, F. W., 1966: On the nature of Aitken condensation nuclei, Tellus 18, 549-556.

    Google Scholar 

  • Yokouchi, Y. and Ambe, Y., 1985: Aerosols formed from the chemical reaction of monoterpenes and ozone, Atmos. Environ. 19, 1271-1276.

    Google Scholar 

  • Yu, J. Z., Flagan, R. C., and Seinfeld, J. H., 1998: Identification of products containing-COOH,-OH, and-C=O in atmospheric oxidation of hydrocarbons, Environ. Sci. Technol. 32, 2357-2370.

    Google Scholar 

  • Zimmerman, P. R., Chatfield, R. B., Fishman, J., Crutzen, P. J., and Hanst, P. L., 1978: Estimates on the production of CO and H2 from the oxidation of hydrocarbon emissions from vegetation, Geophys. Res. Lett. 5, 679-682.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winterhalter, R., Neeb, P., Grossmann, D. et al. Products and Mechanism of the Gas Phase Reaction of Ozone with β-Pinene. Journal of Atmospheric Chemistry 35, 165–197 (2000). https://doi.org/10.1023/A:1006257800929

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006257800929

Navigation