Skip to main content
Log in

The folate receptor as a potential therapeutic anticancer target

  • Published:
Investigational New Drugs Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Antony AC: Folate receptors. Annu Rev Nutr 16: 501-521, 1996

    Google Scholar 

  2. Anderson RGW, Kamen BA, Rothberg KG, Lacey SW: Potocytosis: sequestration and transport of small molecules by caveolae. Science 255: 410-411, 1992

    Google Scholar 

  3. Leamon CP, Low PS: Delivery of macromolecules into living cells: a method that exploits folate receptor endocytosis. Proc Natl Acad Sci USA 88: 5572-5576, 1991

    Google Scholar 

  4. Rettig WJ, Cordon-Cardo C, Koulos JP, Lewis JL, Oettgen HF, Old LJ: Cell surface antigens of human trophoblast and choriocarcinoma defined by monoclonal antibodies. Int J Cancer 35: 469-475, 1985

    Google Scholar 

  5. Miotti S, Canevari S, Menard S, Mezzanzanica D, Porro G, Pupa SM, Regazzoni M, Tagliabue E, Colnaghi MI: Characterization of human ovarian carcinoma-associated antigens defined by novel monoclonal antibodies with tumor-restricted specificity. Int J Cancer 39: 297-303, 1987

    Google Scholar 

  6. Franklin WA, Waintrub M, Edwards D, Christensen K, Prendegrast P, Woods J, Bunn PA, Kolhouse JF: New anti-lung cancer antibody cluster 12 reacts with human folate receptors present on adenocarcinoma. Int J Cancer (Suppl) 8: 89-95, 1994

    Google Scholar 

  7. Mezzanzanica D, Canevari S, Menard S, Pupa SM, Tagliabue E, Lanzavecchia A, Colnaghi MI: Human ovarian carcinoma lysis by cytotoxic T cells targeted by bispecific monoclonal antibodies: analysis of the antibody components. Int J Cancer 41: 609-615, 1988

    Google Scholar 

  8. Habeck LL, Leitner TA, Shackelford KA, Gossett LS, Schultz RM, Andis SL, Shih C, Grindey GB, Mendelsohn LG: A novel class of monoglutamated antifolates exhibits tight-binding inhibition of human glycinamide ribonucleotide formyltransferase and potent activity against solid tumors. Cancer Res 54: 1021-1026, 1994

    Google Scholar 

  9. Mendelsohn LG, Shih C, Schultz RM, Worzalla JF: Biochemistry and pharmacology of glycinamide ribonucleotide formyltransferase inhibitors: LY309887 and lometrexol. Invest New Drugs 14: 287-294, 1996

    Google Scholar 

  10. Rao BPR, Lagerlof B, Einhorn J, Reizenstein P: Low serumfolic-acid in malignancy. Lancet 1963: 1192-1193

  11. Magnus EM: Low serum-folic-acid in malignancy. Lancet 1963: 302

  12. Hoogstraten B, Baker H, Gilbert HS: Serum folate and serum vitamin B12 in patients with malignant hematologic diseases. Cancer Res 25: 1933-1938, 1965

    Google Scholar 

  13. Magnus EM: Folate activity in serum and red cells of patients with cancer. Cancer Res 27: 490-497, 1967

    Google Scholar 

  14. Rothenberg SP: A macromolecular factor in some leukemic cells which binds folic acid. Proc Soc Exp Biol Med 133: 428- 432, 1970

    Google Scholar 

  15. Rothenberg SP, daCosta M: Further observations on the folate-binding factor in some leukemic cells. J Clin Invest 50: 719-726, 1971

    Google Scholar 

  16. Corrocher R, Bambara LM, Pachor ML, Biasi D, Stanzial A, De Sandre G: Serum folate-binding capacity in leukemias, liver disease and pregnancy. Acta Haematol 61: 203-208, 1979

    Google Scholar 

  17. Elwood PC, Deutsch JC, Kolhouse JF: The conversion of the human membrane-associated folate-binding protein (folate receptor) to the soluble folate-binding protein by a membrane-associated metalloprotease. J Biol Chem 266: 2346-2353, 1991

    Google Scholar 

  18. Rochman H, Selhub J, Karrison T: Folate-binding protein and the estrogen receptor in breast cancer. Cancer Detect Prev 8: 71-75, 1985

    Google Scholar 

  19. Campbell IG, Jones TA, Foulkes WD, Trowsdale J: Folate-binding protein is a marker for ovarian cancer. Cancer Res 51: 5329-5338, 1991

    Google Scholar 

  20. Weitman SD, Lark RH, Coney LR, Fort DW, Frasca V, Zurawski VR, Kamen BA: Distribution of the folate receptor GP38 in normal and malignant cell lines and tissues. Cancer Res 52: 3396-3401, 1992

    Google Scholar 

  21. Weitman SD, Frazier KM, Kamen BA: The folate receptor in central nervous system malignancies of childhood. J Neuro-Oncol 21: 107-112, 1994

    Google Scholar 

  22. Elwood PC: Molecular cloning and characterization of the human folate-binding protein cDNA from placenta and malignant tissue culture (KB) cells. J Biol Chem 264: 14893-14901, 1989

    Google Scholar 

  23. Lacey SW, Sanders JM, Rothberg KG, Anderson RGW, Kamen BA: Complementary DNA for the folate-binding protein correctly predicts anchoring to the membrane by glycosylphosphatidylinositol. J Clin Invest 84: 715-720, 1989

    Google Scholar 

  24. Ratnam M, Marquardt H, Duhring JL, Freisheim JH: Homologous membrane folate-binding proteins in human placenta: cloning and sequence of a cDNA. Biochemistry 28: 8249-8254, 1989

    Google Scholar 

  25. Ragoussis J, Senger G, Trowsdale J, Campbell IG: Genomic organization of the human folate receptor genes on chromosome 11q13. Genomics 14: 423-430, 1992

    Google Scholar 

  26. Hagemeijer A, Lafage M, Mattei M-G, Simonetti J, Smit E, de Lapeyriere O, Birnbaum D: Localization of the HST/FGFK gene with regard to 11q13 chromosomal breakpoint and fragile site. Gen Chromos Cancer 3: 210-214, 1991

    Google Scholar 

  27. Motokura T, Bloom T, Kim HG, Juppner H, Ruderman JV, Kronenberg HM, Arnold A: A novel cyclin encoded by a bc11-linked candidate oncogene. Nature 350: 512-515, 1991

    Google Scholar 

  28. Szepetowski P, Perucca-Lostanlen D, Gaudray P: Mapping genes according to their amplification status in tumor cells: contribution to the map of 11q13. Genomics 16: 745-750, 1993

    Google Scholar 

  29. Sainati L, Montaldi A, Putti MC, Giangaspero F, Rigobello L, Stella M, Zanesco L, Basso G: Cytogenetic t(11;17)(q13;q21) in a pediatric ependymoma: is 11q13 a recurring breakpoint in ependymomas? Cancer Genet Cytogenet 59: 213-216, 1992

    Google Scholar 

  30. Kato H, Uchimura I, Morohoshi M, Fujisawa K, Kobayashi Y, Numano F, Goseki N, Endo M, Tamura A, Nagashima C: Multiple endocrine neoplasia type I associated with spinal ependymoma. Intern Med 35: 285-289, 1996

    Google Scholar 

  31. Orr RE, Kamen BA: UMSCC38 cells amplified at 11q13 for the folate receptor synthesize a mutant nonfunctional folate receptor. Cancer Res 54: 3905-3911, 1994

    Google Scholar 

  32. Orr RE, Kamen BA: Identification of a point mutation in the folate receptor gene that confers a dominant negative phenotype. Cancer Res 55: 847-852, 1995

    Google Scholar 

  33. Shen F, Zheng X, Wang J, Ratnam M: Identification of amino acid residues that determine the differential ligand specifici ties of folate receptors αand β Biochemistry 36: 6157-6163, 1997

    Google Scholar 

  34. Gund P, Andose JD, Rhodes JB, Smith GM: Three-dimensional molecular modeling and drug design. Science 208: 1425-1431, 1980.

    Google Scholar 

  35. Bowen JP, Charifson PS, Fox PC, Kontoyianni M, Miller AB, Schnur D, Stewart EL, van Dyke C: Computer-assisted molecular modeling: indispensable tools for molecular pharmacology. J Clin Pharmacol 33: 1149-1164, 1993

    Google Scholar 

  36. Wang X, Shen F, Freisheim JH, Gentry LE, Ratnam M: Differential stereospecificities and affinities of folate receptor isoforms for folate compounds and antifolates. Biochem Pharmacol 44: 1898-1901, 1992

    Google Scholar 

  37. Schornagel JH, Mauritz R, Kathmann I, Pinedo HM, Peters GJ, Jansen G: Kinetics of carrier-and receptor-mediated transport of antifolates. Proc Am Assoc Cancer Res 37: 386 (abstr), 1996

    Google Scholar 

  38. Sen S, Erba E, D'Incalci M, Bottero F, Canevari S, Tomassetti A: Role of membrane folate-binding protein in the cytotoxicity of 5,10-dideazatetrahydrofolic acid in human ovarian carcinoma cell lines in vitro. Br J Cancer 73: 525-530, 1996

    Google Scholar 

  39. Jansen G, Peters GJ, Kathmann I, Boritzki TJ, Jackson RC: Membrane transport and biological activity of stereoisomers AG2032 and AG2034: novel inhibitors of glycinamide ribonucleotide formyltransferase (abstr). 10th NCI-EORTC Symposium on New Drugs in Cancer Therapy, Amsterdam, June 16-19, 1998

  40. Faessel H, Slocum HK, Jackson RC, Boritzki TJ, Rustum YM, Greco WR: Super in vitrosynergy between trimetrexate and the polyglutamylatable antifolates AG2034, AG2032, AG2009 and Tomudex against human HCT-8 colon cells. Proc Am Assoc Cancer Res 37: 385 (abstr), 1996

    Google Scholar 

  41. Westerhof RG, Schomagel JH, Kathmann I, Jackman AL, Rosowsky A, Forsch RA, Hynes JB, Boyle FT, Peters GJ, Pinedo HM, Jansen G: Carrier-and receptor-mediated transport of folate antagonists targeting folate-dependent enzymes: correlates of molecular-structure and biological activity. Mol Pharmacol 48: 459-471, 1995

    Google Scholar 

  42. Spinella MJ, Brigle KE, Sierra EE, Goldman ID: Distinguishing between folate receptor—mediated transport and reduced folate carrier-mediated transport in L1210 leukemia cells. J Biol Chem 270: 7842-7849, 1995

    Google Scholar 

  43. Nelson R, Butler F, Dugan W, Davis-Land C, Stone M, Dyke R: Phase I clinical trial of LY264618 (dideazatetrahydrofolic acid; DDATHF). Proc Am Soc Clin Oncol 9: 76 (abstr), 1990

    Google Scholar 

  44. Ray MS, Muggia FM, Leichman CG, Grunberg SM, Nelson RL, Dyke RW, Moran RG: Phase I study of (6R)-5,10-dideazatetrahydrofolate: a folate antimetabolite inhibitory to de novopurine synthesis. J Natl Cancer Inst 85: 1154-1159, 1993

    Google Scholar 

  45. Alati T, Worzalla JF, Shih C, Bewley JR, Lewis S, Moran RG, Grindey GB: Augmentation of the therapeutic activity of Lometrexol [(6-R)5,10-dideazatetrahydrofolate] by oral folic acid. Cancer Res 56: 2331-2335, 1996

    Google Scholar 

  46. Laohavinij S, Wedge SR, Lind MJ, Bailey N, Humphreys A, Proctor M, Chapman F, Simmons D, Oakley A, Robson L, Gumbrell L, Taylor GA, Thomas HD, Boddy AV, Newell DR, Calvert AH: A phase I clinical study of the antipurine antifolate lometrexol (DDATHF) given with folic acid. Invest New Drugs 14: 325-335, 1996

    Google Scholar 

  47. Worzalla JF, Self TD, Theobald KS, Rutherford PG, Gossett LS, Shih C, Mendelsohn LG: Antitumor therapeutic index of LY309887 is improved with increased folic acid supplementation in mice maintained on a folate-deficient diet. Proc Am Assoc Cancer Res 37: 383 (abstr), 1996

    Google Scholar 

  48. Touroutoglou N, Pazdur R: Thymidylate synthase inhibitors. Clin Cancer Res 2: 227-243 1996

    Google Scholar 

  49. Takemura Y, Jackman AL: Folate-based thymidylate synthase inhibitors in cancer chemotherapy. Anticancer Drugs 8: 3-16, 1997

    Google Scholar 

  50. Jackman AL, Boyle FT, Harrap KR: Tomudex (ZD1694): from concept to care, a programme in rational drug discovery. Invest New Drugs 14: 305-316, 1996

    Google Scholar 

  51. Rougier P, Ducreux M, Kerr D, Carr BI, Francois E, Adenis A, Seymour L: A phase II study of raltitrexed (‘Tomudex’) in patients with hepatocellular carcinoma. Ann Oncol 8: 500- 502, 1997

    Google Scholar 

  52. Meropol NJ, Pazdur R, Vincent M, Willson JK, Kelsen DP, Douglass HO: Phase II study of ZD1694 in patients with advanced gastric cancer. Am J Clin Oncol 19: 628-630, 1996

    Google Scholar 

  53. Pazdur R, Meropol NJ, Casper ES, Fuchs C, Douglass HO, Vincent M, Abbruzzese JL: Phase II trial of ZD1694 (Tomudex) in patients with advanced pancreatic cancer. Invest New Drugs 13: 355-358, 1996

    Google Scholar 

  54. Well PJ, Basser R, Le Chevalier T, Drings P, Perez Manga G, Adenis A, Seymour L, Smith F, Thatcher N: Phase II trial of raltitrexed (‘Tomudex’) in advanced small-cell lung cancer. Br J Cancer 76: 264-265, 1997

    Google Scholar 

  55. Hatschek T, Wilking N, Zalcberg J, Spiers J, Seymour L: A phase II study in advanced breast cancer: ZD1694 (‘Tomudex’) a novel direct and specific thymidylate synthase inhibitor. Br J Cancer 74: 479-481, 1996

    Google Scholar 

  56. Heaven R, Bowen K, Rinaldi D, Robert F, Jenkins T, Eckardt J, Fields S, Hardy J, Patton S, Kennealy G, von Hoff D, Burris H: An open phase II trial of ZD1694, a thymidylate synthase inhibitor, in patients with non-small cell lung cancer. Proc Am Soc Clin Oncol 13: 355 (abstr), 1994

    Google Scholar 

  57. Rees C, Judson I, Beale P, Mitchell F, Smith R, Mayne K, Averbuch S, Jackman A: Phase I trial of ZD9331, a non-polyglutamatable thymidylate synthase inhibitor given as a five-day continuous infusion. Proc Am Soc Clin Oncol 16: 208 (abstr), 1997

    Google Scholar 

  58. Ratain MJ, Cooper N, Smith R, Vogelzang NJ, Mani S, Shulman K, Lowe PG, Averbuch SD: Phase I study of ZD9331: a novel thymidylate synthase inhibitor. Proc Am Soc Clin Oncol 16: 208 (abstr), 1997

    Google Scholar 

  59. Slamon D, Leyland-Jones B, Shak S, Paton V, Bajamonde A, Fleming T, Eiermann W, Wolter J, Baselga J, Norton L: Addition of Herceptin (humanized anti-her2 antibody) to first line chemotherapy for her2 overexpressing metastatic breast cancer (her2+/MBC) markedly increases anticancer activity: a randomized, multinational controlled phase III trial. Proc Am Soc Clin Oncol 17: 98 (abstr), 1998

    Google Scholar 

  60. Garin-Chesa P, Campbell I, Saigo PE, Lewis JL, Old LJ, Rettig WJ: Trophoblast and ovarian cancer antigen LK26: sensitivity and specificity in immunopathology and molecular identification as a folate-binding protein. Am J Pathol 142: 557-567, 1993

    Google Scholar 

  61. Coney LR, Mezzanzanica D, Sanborn D, Casalini P, Colnaghi MI, Zurawski VR: Chimeric murine-human antibodies directed against folate-binding receptor are efficient mediators of ovarian carcinoma cell killing. Cancer Res 54: 2448-2455, 1994

    Google Scholar 

  62. Corrocher R, Pachor ML, Bambara LM, Stanzial AM, Biasi D, De Sandre G: Serum folate-binding capacity in patients with solid tumors. Tumori 67: 101-104, 1981

    Google Scholar 

  63. Epenetos AA, Munro AJ, Stewart S, Rampling R, Lambert HE, McKenzie CG, Soutter P, Rahemtulla A, Hooker G, Sivolapenko GB, Snook D, Courtenay-Luck N, Dhokia B, Krausz T, Taylor-Papadimitriou J, Durbin Y, Bodmer WF: Antibody-guided irradiation of advanced ovarian cancer with intraperitoneally administered radiolabeled monoclonal antibodies. J Clin Oncol 5: 1890-1899, 1987

    Google Scholar 

  64. Finkler NJ, Muto MG, Kassis AI, Weadock K, Tumeh SS, Zurawski VR, Knapp RC: Intraperitoneal radiolabeled OC 125 in patients with advanced ovarian cancer. Gynecol Oncol 34: 339-344, 1989

    Google Scholar 

  65. Crippa F, Bolis G, Seregni E, Gavoni N, Scarfone G, Ferraris C, Buraggi GL, Bombardieri E: Single-dose intraperitoneal radioimmunotherapy with the murine monoclonal antibody I-131 MOv18: clinical results in patients with minimal residual disease of ovarian cancer. Eur J Cancer 31A: 686-690, 1995

    Google Scholar 

  66. Crippa F, Buraggi GL, di Re E, Gasparini M, Seregni E, Canevari S, Gadina M, Presti M, Marini A, Seccamani E: Radioimmunoscintigraphy of ovarian cancer with the MOv18 monoclonal antibody. Eur J Cancer 27: 724-729, 1991

    Google Scholar 

  67. Bolhuis RLH, Lamers CHJ, Goey SH, Eggermont AMM, Trimbos JBMZ, Stoter G, Lanzavecchia A, di Re E, Raspagliesi F, Rivoltini L, Colnaghi MI: Adoptive immunotherapy of ovarian carcinoma with BS-MAb-targeted lymphocytes: a multicenter study. Int J Cancer (Suppl) 7: 78-81, 1992

    Google Scholar 

  68. Canevari S, Mezzanzanica D, Mazzoni A, Negri DRM, Ramakrishna V, Bolhuis RLH, Colnaghi MI, Bolis G: Bispecific antibody targeted T-cell therapy of ovarian cancer: clinical results and future directions. J Hematother 4: 423-427, 1995

    Google Scholar 

  69. Canevari S, Stoter G, Arienti F, Bolis G, Colnaghi MI, di Re EM, Eggermont AMM, Goey SH, Gratama JW, Lamers CHJ, Nooy MA, Parmiani G, Raspagliesi F, Ravagnani F, Scarfone G, Trimbos JB, Warnaar SO, Bolhuis RLH: Regression of advanced ovarian carcinoma by intraperitoneal treatment with autologous T-lymphocytes retargeted by a bispecific monoclonal antibody. J Natl Cancer Inst 87: 1463-1469, 1995

    Google Scholar 

  70. Lamers CHJ, Gratama JW, Warnaar SO, Stoter G, Bolhuis RLH: Inhibition of bispecific monoclonal antibody (bsAb)-targeted cytolysis by human-anti-mouse antibodies in ovarian carcinoma patients treated with bsAb-targeted activated T-lymphocytes. Int J Cancer 60: 450-457, 1995

    Google Scholar 

  71. Luiten RM, Warnaar SO, Sanborn D, Lamers CHJ, Bolhuis RLH, Litvinov SV, Zurawski VR, Coney LR: Chimeric bispecific OC/TR monoclonal antibody mediates lysis of tumor cells expressing the folate-binding protein (MOv18) and displays decreased immunogenicity in patients. J Immunother 20: 496-504, 1997

    Google Scholar 

  72. Mazzoni A, Mezzanzanica D, Jung G, Wolf H, Colnaghi MI, Canevari S: CD3-CD28 costimulation as a means to avoiding T cell preactivation in bispecific monoclonal antibody-based treatment of ovarian carcinoma. Cancer Res 56: 5443-5449, 1996

    Google Scholar 

  73. Kranz DM, Patrick TA, Brigle KE, Spinella MJ, Roy EJ: Conjugates of folate and anti-T-cell-receptor antibodies specifi-cally target folate receptor-positive tumor cells for lysis. Proc Natl Acad Sci USA 92: 9057-9061, 1995

    Google Scholar 

  74. Cho BK, Roy EJ, Patrick TA, Kranz DM: Single-chain Fv/folate conjugates mediate efficient lysis of folate receptor-positive tumor cells. Bioconjug Chem 8: 338-346, 1997

    Google Scholar 

  75. Roy EJ, Cho BK, Rund LA, Patrick TA, Kranz DM: Targeting T cells against brain tumors with a bispecific ligand-antibody conjugate. Int J Cancer 76: 761-766, 1998

    Google Scholar 

  76. Hwu P, Yang JC, Cowherd R, Treisman J, Shafer GE, Eshhar Z, Rosenberg SA: In vivoantitumor activity of T cells redirected with chimeric antibody/T-cell receptor genes. Cancer Res 55: 3369-3373, 1995

    Google Scholar 

  77. Casalini P, Caldera M, Canevari S, Menard S, Mezzanzanica D, Tosi E, Gadina M, Colnaghi MI: A critical comparison of three internalization assays applied to the evaluation of a given mAb as a toxin-carrier candidate. Cancer Immunol Immunother 37: 54-60, 1993

    Google Scholar 

  78. Leamon CP, Low PS: Cytotoxicity of momordin-folate conjugates in cultured human cells. J Biol Chem 267: 24966-24971, 1992

    Google Scholar 

  79. Leamon CP, Pastan I, Low PS: Cytotoxicity of folate-Pseudomonas exotoxin conjugates toward tumor cells: contribution of translocation domain. J Biol Chem 268: 24847- 24854, 1993

    Google Scholar 

  80. Lee RJ, Low PS: Folate-mediated tumor cell targeting of liposome-entrapped dorubicin in vitro. Biochim Biophys Acta 1233: 134-144, 1995

    Google Scholar 

  81. Ladino CA, Chari RVJ, Bourret LA, Kedersha NL, Goldmacher VS: Folate-maytansinoids: target-selective drugs of low molecular weight. Int J Cancer 73: 859-864, 1997

    Google Scholar 

  82. Wang S, Lee RJ, Mathias CJ, Green MA, Low PS: Synthesis, purification and tumor cell uptake of 67Ga-deferoxaminefolate, a potential radiopharmaceutical for tumor imaging. Bioconjug Chem 7: 56-62, 1996

    Google Scholar 

  83. Mathias CJ, Wang S, Lee RJ, Waters DJ, Low PS, Green MA: Tumor-selective radiopharmaceutical targeting via receptor-mediated endocytosis of Gallium-67-deferoxamine-folate. J Nucl Med 37: 1003-1008, 1996

    Google Scholar 

  84. Wang S, Luo J, Lantrip DA, Waters DJ, Mathias CJ, Green MA, Fuchs FL, Low PS: Design and synthesis of [111In]DTPA-folate for use as a tumor-targeted radiopharmaceutical. Bioconjug Chem 8: 673-679, 1997

    Google Scholar 

  85. Antich P, Kulkarni PV, Constantinescu A, Prior J, Nguyen T, Anderson J, Weitman S, Kamen B, Parkey RW: Imaging of folate receptors with I-125 labeled folate using small animal imaging system built with plastic scintillating optical fibers. J Nucl Med 35: 222 (abstr), 1994

    Google Scholar 

  86. Citro G, Szczylik C, Ginobbi P, Zupi G, Calabretta B: Inhibition of leukaemia cell proliferation by folic acid-polylysine-mediated introduction of c-myb antisense oligodeoxynucleotides into HL-60 cells. Br J Cancer 69: 463-467, 1994

    Google Scholar 

  87. Ginobbi P, Geiser TA, Ombres D, Citro G: Folic acidpolylysine carrier improves efficacy of c-myc antisense oligodeoxynucleotides on human melanoma (M14) cells. Anticancer Res 17: 29-35, 1997

    Google Scholar 

  88. Wang S, Lee RJ, Cauchon G, Gorenstein DG, Low PS: Delivery of antisense oligodeoxyribonucleotides against the human epidermal growth factor receptor into cultured KB cells with liposomes conjugated to folate via polyethylene glycol. Proc Natl Acad Sci USA 92: 3318-3322, 1995

    Google Scholar 

  89. Kamen B: Folate and antifolate pharmacology. Semin Oncol 24 (Suppl 18): S18-30-S18-39, 1997

    Google Scholar 

  90. Gottschalk S, Cristiano RJ, Smith LC, Woo SLC: Folate receptor-mediated DNA delivery into tumor cells: potosomal disruption results in enhanced gene expression. Gene Ther 1: 185-191, 1994

    Google Scholar 

  91. Bergsagel DJ, Finegold MJ, Butel JS, Kupsky WJ, Garcea RL: DNA sequences similar to those of simian virus 40 in ependymomas and choroid plexus tumors of childhood. N Engl JMed 326: 988-993, 1992

    Google Scholar 

  92. Lednicky JA, Garcea RL, Bergsagel DJ, Butel JS: Natural simian virus 40 strains are present in human choroid plexus and ependymoma tumors. Virology 212: 710-717, 1995

    Google Scholar 

  93. Brinster RL, Chen HY, Messing A, van Dyke T, Levine AJ, Palmiter RD: Transgenic mice harboring SV40 T-antigen genes develop characteristic brain tumors. Cell 37: 367-379, 1984

    Google Scholar 

  94. Palmiter RD, Chen HY, Messing A, Brinster RL: SV40 enhancer and large-T antigen are instrumental in development of choroid plexus tumours in transgenic mice. Nature 316: 457-460, 1985

    Google Scholar 

  95. Patrick TA, Kranz DM, van Dyke TA, Poy EJ: Folate receptors as potential therapeutic targets in choroid plexus tumors of SV40 transgenic mice. J Neuro-Oncol 32: 111-123, 1997

    Google Scholar 

  96. Gruner B, Moore R, Barrera H, Weitman S: Characterization of a folate receptor-positive cell line isolated from a SV-40-Tag induced murine brain tumor. Proc Am Assoc Cancer Res 39: 430 (abstr), 1998

    Google Scholar 

  97. Smart EJ, Foster DC, Ying YS, Kamen BA, Anderson RGW: Protein kinase C activators inhibit receptor-mediated potocytosis by preventing internalization of caveolae. J Cell Biol 124: 307-313, 1994

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gruner, B.A., Weitman, S.D. The folate receptor as a potential therapeutic anticancer target. Invest New Drugs 16, 205–219 (1998). https://doi.org/10.1023/A:1006147932159

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006147932159

Navigation