Skip to main content
Log in

Expressing foreign genes in the pistil: a comparison of S-RNase constructs in different Nicotiana backgrounds

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Transgenic plant experiments have great potential for extending our understanding of the role of specific genes in controlling pollination. Often, the intent of such experiments is to over-express a gene and test for effects on pollination. We have examined the efficiency of six different S-RNase constructs in Nicotiana species and hybrids. Each construct contained the coding region, intron, and downstream sequences from the Nicotiana alata SA2-RNase gene. Among the six expression constructs, two utilized the cauliflower mosaic virus (CaMV) 35S promoter with duplicated enhancer, and four utilized promoters from genes expressed primarily in pistils. The latter included promoters from the tomato Chi2;1 and 9612 genes, a promoter from the N. alata SA2-RNase gene, and a promoter from the Brassica SLG-13 gene. Some or all of the constructs were tested in N. tabacum, N. plumbaginifolia, N. plumbaginifolia × SI N. alata SC10SC10 hybrids, N. langsdorffii, and N. langsdorffii × SC N. alata hybrids. Stylar specific RNase activities and SA2-RNase transcript levels were determined in transformed plants. Constructs including the tomato Chi2;1 gene promoter or the Brassica SLG-13 promoter provided the highest levels of SA2-RNase expression. Transgene expression patterns were tightly regulated, the highest level of expression was observed in post-anthesis styles. Expression levels of the SA2-RNase transgenes was dependent on the genetic background of the host. Higher levels of SA2-RNase expression were observed in N. plumbaginifolia × SC N. alata hybrids than in N. plumbaginifolia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beecher B, Murfett J, McClure BA: RNaseI from E. coli cannot substitute for SRNase in rejection of Nicotiana plumbaginifolia pollen. Plant Mol Biol 36: 553–563 (1998).

    PubMed  Google Scholar 

  2. Bernatzky R, Schilling A: Methods for Southern blotting and hybridization. In: Osborn TC, Beckmann JS (eds) Plant genomes: Methods for Genetic and Physical Mapping, pp. 15–34. Kluwer Academic Publishers, Dordrecht, Netherlands (1992).

    Google Scholar 

  3. Bevan M: Binary Agrobacterium vectors for plant transformation. Nucl Acids Res 12: 8711–8721 (1984).

    PubMed  Google Scholar 

  4. Broothaerts W, Janssens GA, Proost P, Broekaert WF: cDNA cloning and molecular analysis of two selfincompatibility alleles from apple. Plant Mol Biol 27: 499–511 (1995).

    PubMed  Google Scholar 

  5. Budelier KA, Smith AG, Gasser CS: Regulation of a stylar transmitting tissuespecific gene in wildtype and transgenic tomato and tobacco. Mol Gen Genet 224: 183–192 (1990).

    Article  PubMed  Google Scholar 

  6. Cheung AY, Wang H, Wu Hm: A floral transmitting tissuespecific glycoprotein attracts pollen tubes and stimulates their growth. Cell 82: 383–393 (1995).

    PubMed  Google Scholar 

  7. Clark KR, Sims TL: The Sribonuclease gene of Petunia hybrida is expressed in nonstylar tissue, including immature anthers. Plant Physiol 106: 25–36 (1994).

    PubMed  Google Scholar 

  8. Dzelzkalns VA, Thorsness MK, Dwyer KG, Baxter JS, Balent MA, Nasrallah ME, Nasrallah JB: Distinct cis-acting elements direct pistilspecific and pollenspecific activity of the Brassica S locus glycoprotein gene promoter. Plant Cell 5: 855–863 (1993).

    PubMed  Google Scholar 

  9. Ebert PR, Clarke AE: Transformation and regeneration of the selfincompatible species Nicotiana alata Link & Otto. Plant Mol Biol 14: 815–824 (1990).

    PubMed  Google Scholar 

  10. Gasser CS, Budelier KA, Smith AG, Shah DM, Fraley RT: Isolation of tissuespecific cDNAs from tomato pistils. Plant Cell 1: 15–24 (1989).

    Article  PubMed  Google Scholar 

  11. Harikrishna K, Jampates-Beale R, Milligan S, Gasser CS: An endochitinase gene expressed at high levels in the stylar transmitting tissue of tomatoes. Plant Mol Biol 30: 899–911 (1996).

    PubMed  Google Scholar 

  12. Horsch RB, Fry JE, Hoffman NL, Eichholtz D, Rogers SG, Fraley RT: A simple and general method for transferring genes into plants. Science 227: 1229–1231 (1985).

    Google Scholar 

  13. Huang S, Lee HS, Karunanandaa B, Kao Th: Ribonuclease activity of Petunia inflata S proteins is essential for rejection of selfpollen. Plant Cell 6: 1021–1028 (1994).

    Article  PubMed  Google Scholar 

  14. Kandasamy MK, Dwyer KG, Paolillo D, Doney RC, Nasrallah JB, Nasrallah ME: Brassica Sproteins accumulate in the intercellular matrix along the path of pollen tubes in transgenic tobacco pistils. Plant Cell 2: 39–49 (1990).

    PubMed  Google Scholar 

  15. Karunanandaa B, Huang S, Kao Th: Carbohydrate moiety of the Petunia inflata S3 protein is not required for self-incompatibility interactions between pollen and pistil. Plant Cell 6: 1933–1940 (1994).

    PubMed  Google Scholar 

  16. Kay R, Chan A, Daly M, McPherson J: Duplication of CaMV 35S promoter sequences creates a strong enhancer for plant genes. Science 236: 1299–1302 (1987).

    Google Scholar 

  17. Lee HS, Huang S, Kao Th: S proteins control rejection of incompatible pollen in Petunia inflata. Nature 367: 560–563 (1994).

    Article  PubMed  Google Scholar 

  18. Matton DP, Maes O, Laublin G, Xike Q, Bertrand C, Morse D, Cappadocia M: Hypervariable domains of selfincompatibility RNases mediate allelespecific pollen recognition. Plant Cell 9: 1757–1766 (1997).

    PubMed  Google Scholar 

  19. McClure BA, Gray JE, Anderson MA, Clarke AE: Selfincompatibility in Nicotiana alata involves degradation of pollen rRNA. Nature 347: 757–760 (1990).

    Article  Google Scholar 

  20. McClure BA, Haring V, Ebert PR, Anderson MA, Simpson RJ, Sakiyama F, Clarke AE: Style selfincompatibility gene products of Nicotiana alata are ribonucleases. Nature 342: 955–957 (1989).

    Article  PubMed  Google Scholar 

  21. McCubbin AG, Chung YY, Kao Th: A mutant S3 RNase of Petunia inflata lacking RNase activity has an allelespecific dominant negative effect on selfincompatibility interactions. Plant Cell 9: 85–95 (1997).

    PubMed  Google Scholar 

  22. Moore HM, Nasrallah JB: A Brassica selfincompatibility gene is expressed in the stylar transmitting tissue of transgenic tobacco. Plant Cell 2: 29–38 (1990).

    PubMed  Google Scholar 

  23. Murfett J, Atherton TL, Mou B, Gasser CS, McClure BA: SRNase expressed in transgenic Nicotiana causes S-allele-specific pollen rejection. Nature 367: 563–566 (1994).

    Article  PubMed  Google Scholar 

  24. Murfett J, Bourque JE, McClure BA: Antisense suppression of SRNase expression in Nicotiana using RNA polymerase IIand IIItranscribed gene constructs. Plant Mol Biol 29: 210–212 (1995).

    Google Scholar 

  25. Murfett J, Cornish EC, Ebert PR, Bönig I, McClure BA, Clarke AE: Expression of a selfincompatibility glycoprotein (S2ribonuclease) from Nicotiana alata in transgenic Nicotiana tabacum. Plant Cell 4: 1063–1074 (1992).

    PubMed  Google Scholar 

  26. Murfett J, Ebert PR, Haring V, Clarke AE: An SRNase promoter from Nicotiana alata functions in transgenic N. alata but not in Nicotiana tabacum. Plant Mol Biol 28: 957–963 (1995).

    PubMed  Google Scholar 

  27. Murfett JM, Strabala TJ, Zurek DM, Mou B, Beecher B, McClure BA: S RNase and interspecific pollen rejection in the genus Nicotiana: multiple pollen rejection pathways contribute to unilateral incompatibility between selfincompatible and selfcompatible species. Plant Cell 8: 943–958 (1996).

    PubMed  Google Scholar 

  28. Newbigin E, Anderson MA, Clarke AE: Gametophytic selfincompatibility systems. Plant Cell 5: 1315–1324 (1993).

    Article  PubMed  Google Scholar 

  29. Sassa H, Nishio T, Kowyama Y, Hirano H, Koba T, Ikehashi H: Self-incompatibility (S) alleles of the Rosaceae encode members of a distinct class of the T2/Sribonuclease superfamily. Mol Gen Genet 250: 547–557 (1996).

    PubMed  Google Scholar 

  30. Sessa G, Fluhr R: The expression of an abundant transmitting tractspecific endoglucanase (Sp41) is promoterdependent and not essential for the reproductive physiology of tobacco. Plant Mol Biol 29: 969–982 (1995).

    PubMed  Google Scholar 

  31. Skuzeski JM, Nichols LM, Gesteland RF: Analysis of leaky viral translation termination codons in vivo by transient expression of improved β-glucuronidase vectors. Plant Mol Biol 15: 65–69 (1990).

    Article  PubMed  Google Scholar 

  32. Thorsness MK, Kandasamy MK, Nasrallah ME, Nasrallah JB: A Brassica Slocus gene promoter targets toxic gene expression and cell death to the pistil and pollen of transgenic Nicotiana. Devel Biol 143: 173–184 (1991).

    Google Scholar 

  33. Xue Y, Carpenter R, Dickinson HG, Coen ES: Origin of allelic diversity in Antirrhinum S locus RNases. Plant Cell 8: 805–814 (1996).

    PubMed  Google Scholar 

  34. Zurek DM, Mou B, Beecher B, McClure B: Exchanging sequence domains between SRNases from Nicotiana alata disrupts pollen recognition. Plant J 11: 797–808 (1997).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murfett, J., McClure, B.A. Expressing foreign genes in the pistil: a comparison of S-RNase constructs in different Nicotiana backgrounds. Plant Mol Biol 37, 561–569 (1998). https://doi.org/10.1023/A:1006060429139

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006060429139

Navigation