Skip to main content
Log in

Interaction of troponin-H and glutathione S-transferase-2 in the indirect flight muscles of Drosophila melanogaster

  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Summary

Drosophila indirect flight muscles (IFMs) contain a 35 kDa protein which cross-reacts with antibodies to the IFM specific protein troponin-H isoform 34 (TnH-34). Peptide fingerprinting and peptide sequencing showed that this 35 kDa protein is glutathione S-transferase-2 (GST-2). GST-2 is present in the asynchronous indirect flight muscles but not in the synchronous tergal depressor of the trochanter (jump muscle). Genetic dissection of the sarcomere showed that GST-2 is stably associated with the thin filaments but the presence of myosin is required to achieve the correct stoichiometry, suggesting that there is also an interaction with the thick filament. The two Drosophila TnHs (isoforms 33 and 34) are naturally occurring fusion proteins in which a proline-rich extension of ~250 amino acids replaces the 27 C-terminal residues of the muscle-specific tropomyosin II isoform. The proteolytic enzyme, Igase, cleaves the hydrophobic C-terminal sequence of TnH-34 at three sites and TnH-33 at one site. This results in the release of GST-2 from the myofibril. The amount of GST-2 stably bound to the myofibril is directly proportional to the total amount of undigested TnH. It is concluded that GST-2 in the thin filament is stabilized there by interaction with TnH. We speculate that the hydrophobic N-terminal region of GST-2 interacts with the hydrophobic C-terminal extension of TnH, and that both are close to a myosin cross-bridge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beall, C., Fyrberg, C., Song, S. & Fyrberg, E. (1992) Isolation of a Drosophila gene encoding glutathione S-transferase. Biochem. Genet. 30, 515–27.

    Article  PubMed  CAS  Google Scholar 

  • Beall, C. J., Sepanski, M. A. & Fyrberg, E. A. (1989) Genetic dissection of Drosophila myofibril formation: effects of actin and myosin heavy chain null alleles. Genes & Devel. 3, 131–40.

    CAS  Google Scholar 

  • Beitner, R. (1993) Control of glycolytic enzymes through binding to cell structures and by glucose-1,6-bisphosphate under different conditions. The role of Ca2+ and calmodulin. Int. J. Biochem. 25, 297–305.

    Article  PubMed  CAS  Google Scholar 

  • Bernstein, S. I., O'Donnell, P. T. & Cripps, R. M. (1993) Molecular genetic analysis of muscle development, structure, and function in Drosophila. Int. Rev. Cytol. 143, 63–152.

    Article  PubMed  CAS  Google Scholar 

  • Boyer, T. D. & Vessey, D. A. (1987) Inhibition of human cationic glutathione S-transferase by nonsubstrate ligands. Hepatology 7, 843–8.

    PubMed  CAS  Google Scholar 

  • Bullard, B., Bell, J., Craig, R. & Leonard, K. (1985) Arthrin: a new actin-like protein in insect flight muscle. J. Mol. Biol. 182, 443–54.

    Article  PubMed  CAS  Google Scholar 

  • Bullard, B., Leonard, K., Larkins, A., Butcher, G., Karlik, C. & Fyrberg, E. (1988) Troponin of asynchronous flight muscle. J. Mol. Biol. 204, 621–37.

    Article  PubMed  CAS  Google Scholar 

  • Burnette, N. W. (1981) “Western blotting”: electrophoretic transfer of proteins from sodium dodecyl sulfatepolyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal. Biochem. 112, 195–203.

    Article  PubMed  CAS  Google Scholar 

  • Carpenter, J. M. (1950) A new semisynthetic food medium for Drosophila. Drosophila Inf. Serv. 24, 96–7.

    Google Scholar 

  • Carter, N. J. (1994) Stretch activation in insect fibrillar flight muscle. DPhil. thesis, University of York.

  • Chiou, S.-H., Yu, C.-W., Lin, C.-W., Pan, F.-M., Lu, S.-F. & Lee, H.-J. (1995) Octopus S-crystallins with endogenous glutathione S-transferase (GST) activity: sequence comparison and evolutionary relationships with authentic GST enzymes. Biochem. J. 309, 793–800.

    PubMed  CAS  Google Scholar 

  • Chun, M. & Falkenthal, S. (1988) Ifm(2)2 is a myosin heavy chain allele that disrupts myofibrillar assembly only in the indirect flight muscle of Drosophila melanogaster. J. Cell Biol. 107, 2613–21.

    Article  PubMed  CAS  Google Scholar 

  • Clarke, F. M. & Masters, C. J. (1976) Interactions between muscle proteins and glycolytic enzymes. Int. J. Biochem. 7, 359–65.

    Article  CAS  Google Scholar 

  • Cripps, R. M. & Sparrow, J. C. (1992) Polymorphism in a Drosophila indirect flight muscle-specific tropomyosin isozyme does not affect flight ability. Biochem. Genet. 30, 159–68.

    Article  PubMed  CAS  Google Scholar 

  • Dantzig, J. A., Carter, N. J., Sparrow, J. C. & White, D. C. S. (1992) Suppression of stretch activation in Lethocerus flight muscle by mild digestion with calpain. Biophys. J. 61, A268.

    Google Scholar 

  • Ferguson, C., Lakey, A., Hutchings, A., Butcher, G. W., Leonard, K. R. & Bullard, B. (1994) Cytoskeletal proteins of insect muscle: location of zeelins in Lethocerus flight and leg muscle. J. Cell Sci. 107, 1115–29.

    PubMed  CAS  Google Scholar 

  • Fournier, D., Bride, J. M., Poirie, M., BergeÉ, J.-B. & Plapp, F. W. J. (1992) Insect glutathione S-transferases. Biochemical characteristics of the major forms from houseflies susceptible and resistant to insecticides. J. Biol. Chem. 267, 1840–45.

    PubMed  CAS  Google Scholar 

  • Franciosa, H. & BergÉ, J. B. (1995) Glutathione Stransferases in housefly (Musca domestica): location of GST-1 and GST-2 families. Insect Biochem. Molec. Biol. 25, 311–17.

    Article  CAS  Google Scholar 

  • Hanke, P. D. & Storti, R. V. (1988) The Drosophila melanogaster tropomyosin II gene produces multiple proteins by the use of alternative tissue-specific promoters and alternative splicing. Mol. Cell. Biol. 8, 3591–3602.

    PubMed  CAS  Google Scholar 

  • Henzel, W. J., Billeci, T. M., Stultz, J. T., Wong, S. C., Grimley, C. & Watanabe, C. (1994) Identification of 2-D gel proteins at the femtomole level by molecular mass searching of peptide fragments in a protein sequence database. In Techniques in Protein Chemistry (edited by CRABB, J. W.) pp. 3–9. London: Academic Press.

    Google Scholar 

  • Hiromi, Y. & Hotta, Y. (1985) Actin gene mutations in Drosophila: heat shock activation in the indirect flight muscles. EMBO J. 4, 1681–7.

    PubMed  CAS  Google Scholar 

  • Jewell, B. R. & RÜegg, J. C. (1964) Oscillatory contraction of insect fibrillar muscle after glycerol extraction. Proc. Roy. Soc. Lond. B 164, 428–59.

    Google Scholar 

  • Karlik, C. C., Mahaffey, J. W., Coutu, M. D. & Fyrberg, E. A. (1984) Organisation of contractile protein genes within the 88F subdivision of the D. melanogaster third chromosome. Cell 37, 469–81.

    Article  PubMed  CAS  Google Scholar 

  • Kreuz, A. J., Simcox, A. & Maughan, D. (1996) Alterations in flight muscle ultrastructure and function in Drosophila tropomyosin mutants. J. Cell Biol. 135, 673–87.

    Article  PubMed  CAS  Google Scholar 

  • Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–85.

    Article  PubMed  CAS  Google Scholar 

  • Mogami, K., Fujita, S. C. & Hotta, Y. (1982) Identification of Drosophila indirect flight muscle myofibrillar proteins by means of two-dimensional electrophoresis. J. Biochem. (Tokyo) 91, 643–50.

    CAS  Google Scholar 

  • Mogami, K. & Hotta, Y. (1981) Isolation of Drosophila flightless mutants which affect myofibrillar proteins of indirect flight muscle. Mol. Gen. Genet. 183, 409–17.

    Article  PubMed  CAS  Google Scholar 

  • Newman, R., Butcher, G. W., Bullard, B. & Leonard, K. R. (1992) A method for determining the periodicity of a troponin component in isolated insect flight muscle thin filaments by gold/Fab labelling. J. Cell Sci. 101, 503–8.

    PubMed  Google Scholar 

  • Nishihira, J., Ishibashi, T., Sakai, M., Nishi, S., Kumazaki, T. & Hatanaka, Y. (1992) Circular dichroic evidence for regulation of enzymatic activity by nonsubstrate hydrophobic ligand on glutathione S-transferase P. Biochem. Biophys. Res. Comm. 89, 1243–51.

    Article  Google Scholar 

  • O'Donnell, P. T. & Bernstein, S. I. (1988) Molecular and ultrastructural defects in a Drosophila myosin heavy chain mutant: differential effects on muscle function produced by similar thick filament abnormalities. J. Cell Biol. 107, 2601–12.

    Article  PubMed  Google Scholar 

  • O'Farrell, P. H. (1975) High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250, 4007–21.

    PubMed  Google Scholar 

  • Peckham, M., Cripps, R., White, D. & Bullard, B. (1992) Mechanics and protein content of insect flight muscles. J. Exp. Biol. 168, 57–76.

    CAS  Google Scholar 

  • Peckham, M., Molloy, J. E., Sparrow, J. C. & White, D. C. S. (1990) Physiological properties of the dorsal longitudinal flight muscle and the tergal depressor of the trochanter muscle of Drosophila melanogaster. J. Muscle Res. Cell Motil. 11, 203–15.

    Article  PubMed  CAS  Google Scholar 

  • Pringle, J. W. (1978) Stretch activation of muscle: function and mechanism. Proc. Roy. Soc. Lond. B 201, 107–30.

    Article  CAS  Google Scholar 

  • Reedy, M. C., Reedy, M. K., Leonard, K. R. & Bullard, B. (1994) Gold/Fab immuno electron microscopy localization of Troponin H and Troponin T in Lethocerus flight muscle. J. Mol. Biol. 239, 52–67.

    Article  PubMed  CAS  Google Scholar 

  • Thorson, J. & White, D. C. S. (1969) Distributed representations for actin-myosin interaction in the oscillatory contraction of muscle. Biophys. J. 9, 360–90.

    Article  PubMed  CAS  Google Scholar 

  • Tomarev, S. I. & Zinovieva, R. D. (1988) Squid major lens polypeptides are homologous to glutathione S-transferases subunits. Nature 336, 86–8.

    Article  PubMed  CAS  Google Scholar 

  • Tomarev, S. I., Zinovieva, R. D. & Piatigorsky, J. (1992) Characterisation of squid crystallin genes. Comparison with mammalian glutathione S-transferase genes. J. Biol. Chem. 267, 8604–12.

    PubMed  CAS  Google Scholar 

  • Vander Jagt, D. L., Dean, V. L., Wilson, S. P. & Royer, R. E. (1983) Regulation of the glutathione S-transferase activity of bilirubin transport protein (ligandin) from human liver. J. Biol. Chem. 258, 5689–94.

    PubMed  CAS  Google Scholar 

  • Vigoreaux, J. O., Saide, J. D., Valgeirsdottir, K. & Pardue, M. L. (1993) Flightin, a novel myofibrillar protein of Drosophila stretch-activated flight muscles. J. Cell Biol. 121, 587–98.

    Article  PubMed  CAS  Google Scholar 

  • Walsh, T. P., Clarke, F. M. & Masters, J. C. (1977) Modification of the kinetic parameters of aldolase on binding to the actin-containing filament of skeletal muscle. Biochem. J. 165, 165–7.

    PubMed  CAS  Google Scholar 

  • White, D. C. S. (1983) The elasticity of relaxed insect fibrillar flight muscle. J. Physiol. 343, 31–51.

    PubMed  CAS  Google Scholar 

  • Wray, J. S. (1979) Filament geometry and the activation of insect flight muscles. Nature 280, 325–6.

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

CLAYTON, J.D., CRIPPS, R.M., SPARROW, J.C. et al. Interaction of troponin-H and glutathione S-transferase-2 in the indirect flight muscles of Drosophila melanogaster. J Muscle Res Cell Motil 19, 117–127 (1998). https://doi.org/10.1023/A:1005304527563

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005304527563

Keywords

Navigation