Skip to main content
Log in

Cause and Effect At the Magnetopause

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Recent analyses of spacecraft data, especially AMPTE/IRM data, provide a test of reconnection theory; an analysis for the signature of a local tangential stress balance in a one-dimensional time-stationary rotational discontinuity has left crucial questions unanswered. A key result is that the electron temperature profile inward through the magnetopause current sheet shows heating followed by cooling. Electrons must be one of the carriers of the current; hence this result reflects the sign of E · J in the frame of reference of the magnetopause current carriers. Since the current is directed from dawn to dusk, the inescapable conclusion is that the electric field must reverse within the current sheet. This is direct evidence of a load–dynamo combination; in that dynamo, energy is transferred from the solar wind plasma to the electromagnetic field. A dynamo is not included in the reconnection model which includes only the electrical load; therefore, we argue that the reconnection problem is improperly posed. A second compelling observation is a remarkable difference of the normal component of the plasma velocity between inbound and outbound crossings. For an inbound crossing (outward current meander) this component does reverse, but not quite as assumed in the reconnection model; on the other hand, for outbound crossings of the spacecraft (corresponding to erosion) there is no reversal at all. The normal component is approximately constant at 20 km s-1, anti-Sunward throughout. Since the typical motion of the magnetopause is 10 km s-1 this revealing result shows that solar wind plasma can go across the magnetopause, even onto closed field lines to feed the low latitude boundary layer. This is in stark contrast to the reconnection model where the plasma goes to open field lines. The interaction can be understood by appealing to Poynting's theorem, where E · J describes the net effect on or by the plasma. Time-dependent terms (even in the initial conditions) must be used so that it is possible to draw upon energy which has been stored locally in both electrical and magnetic forms. An extended discussion of observational results from ground-based, rocket, and satellite instruments indicate the impulsive nature of the solar wind–magnetospheric interaction. There is a lot of plasma involved in this interaction, over 1027 ions electrons-1 per second; the anti-Sunward flow takes place in the low latitude boundary layer. There is no flux catastrophe produced by this flow since the frozen-field theorem does not hold for plasma transfer across the magnetopause. The LLBL completely envelops the plasma sheet; the LLBL is the source of its plasma, not the plasma mantle as hypothesized in the reconnection model of the magnetotail. A number of serious errors have occurred in some articles in the literature on reconnection, and we list and discuss the most important of these. In the conclusion it is emphasized that the failure to provide a viable energy source, within the necessary spatial and temporal constraints, is responsible for the failure of reconnection model. This does not mean that the state of interconnection between the geomagnetic field and the interplanetary magnetic field can not change, but it does mean that the advocated process is not relevant to such changes. True reconnection requires that the electric field has a curl so that an electromotive force ∈ = ∮ E · dl = -dΦMdt exists through which energy can be interchanged with stored magnetic energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alfvén, H. and Fälthammar, C.-G.: 1963, Cosmical Electrodynamics, Clarendon Press, Oxford.

    Google Scholar 

  • Alfvén, H.: 1986, IEEE Trans. Plasma Sci., PS-14, 783.

    Google Scholar 

  • Aubry, M. P., Russell, C. R., and Kivelson, M. G.: 1970, J. Geophys. Res. 75, 7018.

    Google Scholar 

  • Axford, W. I. and Hines, C. O.: 1961, Can. J. Phys. 39, 1433.

    Google Scholar 

  • Baker, D. N., Bame, S. J., Feldman, W. C., Gosling, J. T., Zwickl, R. D., Slavin, J. A. and Smith, E. J.: 1986, J. Geophys. Res. 91, 5637.

    Google Scholar 

  • Baker, D. N., Bame, McComas, D. J., Zwickl, R. D., Slavin, J. A. and Smith, E. J.: 1987, in A/ Lui (ed.), Magnetotail Physics, Johns Hopkins University Press, p. 137.

  • Baker, D. N.: 1996, in Third International Conference on Substorms, ESA Report SP-389, p. 365.

  • Berchem, J. and Russell, C. T.: 1982, J. Geophys. Res. 87, 2108.

    Google Scholar 

  • Boris, J. P., Dawson, J. M., Orens, J. H., and Roberts, K. V.: 1970, Phys. Rev. Lett. 25, 706.

    Google Scholar 

  • Bostick, W. H.: 1957, Phys. Rev. 106, 404.

    Google Scholar 

  • Bryant, D. A. and Riggs, S.: 1989, Phil. Trans. Roy. Soc. London A328, 43.

    Google Scholar 

  • Buneman, O.: 1992, IEEE Trans. Plasma Phys. 20, 672.

    Google Scholar 

  • Carlson, C. and Torbert, R.: 1980, J. Geophys. Res. 85, 2903.

    Google Scholar 

  • Clemmow, P. and Dougherty, J.: 1969, Electrodynamics of Particles and Plasmas, Addison-Wesley, New York.

    Google Scholar 

  • Cole, K. D.: 1961, Geophys. J.R. Astron. Soc. 6, 103.

    Google Scholar 

  • Cowley, S. W. H.: 1980, Space Sci. Rev. 26, 217.

    Google Scholar 

  • Cowley, S. W. H.: 1984, in E. W. Hones, Jr. (ed.), Reconnection in Laboratory and Space Plasmas, AGU Mono. 30, 228.

  • Demidenko, I. I., Lomino, N. S., Padalka, V. G., Rutkevitch, B. N., and Sinel'nikov, K. D.: 1967, Soviet Phys.-Techn. Phys. 11, 1354.

    Google Scholar 

  • Dungey, J. W.: 1958, Cosmic Electrodynamics, Cambridge University Press, Cambridge.

    Google Scholar 

  • Dungey, J.: 1961, Phys. Rev. Lett. 44, 725.

    Google Scholar 

  • Eastman, T. E.: 1979, Ph.D. Thesis, Los Alamos Science Laboratory, Los Alamos, NM.

  • Eastman, T. E. and Christon, S.: 1995, in Song, Sonnerup, and Thomsen (eds.), Physics of the Magnetopause, AGU Mono. 90, 131.

  • Eastman, T. E. and Hones, E. W. Jr.: 1979, J. Geophys. Res. 84, 2019.

    Google Scholar 

  • Eastman, T. E., Hones, E. W., Jr., Bame, S. J., and Asbridge, J. R.: 1976, Geophys. Res. Lett. 3, 685.

    Google Scholar 

  • Eastman, T. E., Fuselier, S. A., and Gosling, J. T.: 1996, J. Geophys. Res. 101, 49.

    Google Scholar 

  • Fairfield, D. and Cahill, L.: 1966, J. Geophys. Res. 71, 155.

    Google Scholar 

  • Fennell, J.: 1973, J. Geophys. Res. 78, 1036.

    Google Scholar 

  • Freeman, and Southwood, D.: 1988, Plant. Space Sci. 36, 509.

    Google Scholar 

  • Friis-Christensen E., McHenry, M. A., Clauer, C. R., and Vennerstrøm, S.: 1988, Geophys. Res. Lett. 15, 253.

    Google Scholar 

  • Frank, L. A. and Ackerson, K.: 1971, J. Geophys. Res. 76, 3612.

    Google Scholar 

  • Frank, L. A., Ackerson, K. L., Paterson, W. R., Lee, J. A., English, M. R., and Pickett, G. L.: 1994, J. Geomag. Geoelectr. 46, 23.

    Google Scholar 

  • Fuselier, S. A., Anderson, B. J. and Onsager, T. G.: 1995, J. Geophys. Res. 100, 11,805.

    Google Scholar 

  • Fuselier, S. A., Shelley, E. G., and Klumpar, D. M.: 1993, J. Geophys. Res. 98, 3935.

    Google Scholar 

  • Foster, J. C.: 1984, J. Geophys. Res. 89, 855.

    Google Scholar 

  • Gosling, J. T., Baker, D. N., Bame, S. J., Hones, E. W., Jr., McComas, D. J., Zwickl, R. D., Slavin, J. A., Smith, E. J., and Tsurutani, B. T.: 1984, Geophys. Res. Lett. 11, 1078.

    Google Scholar 

  • Hapgood, M. and Bryant, D. A.: 1990, Plant. Space Sci. 17, 2043.

    Google Scholar 

  • Hapgood, M and Lockwood, M,: 1993, Geophys. Res. Lett. 20, 145.

    Google Scholar 

  • Hardy, D. A., Hills, H. K., and Freeman, J. W.: 1979, J. Geophys. Res. 84, 72.

    Google Scholar 

  • Heikkila, W. J. and Winningham, J. D.: 1971, J. Geophys. Res. 76, 883.

    Google Scholar 

  • Heikkila, W. J.: 1972, Space Res. XII, Akademie-Verlag, Berlin, 1343.

    Google Scholar 

  • Heikkila, W. J.: 1975, Geophys. Res. Lett. 2, 154.

    Google Scholar 

  • Heikkila, W. J.: 1978, Plant. Space Sci. 26, 121.

    Google Scholar 

  • Heikkila, W. J.: 1982a, Geophys. Res. Lett. 9, 159.

    Google Scholar 

  • Heikkila, W. J.: 1982b, Geophys. Res. Lett. 9, 877.

    Google Scholar 

  • Heikkila, W. J.: 1983, Rev. Geophys. Space Phys. 21, 1787.

    Google Scholar 

  • Heikkila, W. J.: 1984, in T. Potemra (ed.), Magnetospheric Currents, AGU Mono. 28, 208.

  • Heikkila, W. J.: 1986a, Geophys. Res. Lett. 13, 233.

    Google Scholar 

  • Heikkila, W. J.: 1986b, in Kamide and Slavin (eds.), Solar Wind-Magnetosphere Coupling, D. Reidel Publ. Co., Dordrecht, Holland, p. 337.

    Google Scholar 

  • Heikkila, W. J.: 1988a, Geophys. Res. Lett. 15, 299.

    Google Scholar 

  • Heikkila, W. J.: 1988b, Astrophys. Space Sci. 144, 85.

    Google Scholar 

  • Heikkila, W. J.: 1990, Space Sci. Rev. 53, 1.

    Google Scholar 

  • Heikkila, W. J.: 1997a, J. Geophys. Res. 102, 2115.

    Google Scholar 

  • Heikkila, W. J.: 1997b, J. Geophys. Res. 102, 9651.

    Google Scholar 

  • Heikkila, W. J., Smith, J. B., Tarstrup, J., and Winningham, J. D.: 1970, Rev. Sci. Instr. 41, 1393.

    Google Scholar 

  • Heikkila, W. J., Pellinen, R. J., Fälthammar, C.-G., and Block, L. P.: 1979, Plant. Space Sci. 27, 1383.

    Google Scholar 

  • Heikkila, W. J., Jorgensen, T. S., Lanzerotti, L. J., and Maclennan, C. G.: 1989, J. Geophys. Res. 94, 15291.

    Google Scholar 

  • Hones, E. W. Jr., Asbridge, J. R., Bame, S. j., Montgomery, M. D., Singer, S., and Akasofu, S.-I.: 1972, J. Geophys. Res. 7, 5503.

    Google Scholar 

  • Hones, E. W. Jr., Birn, J., Bame, S. J., Asbridge, J. R., Paschmann, G., Sckopke, N., and Haerendel, G.: 1981, J. Geophys. Res. 86, 814.

    Google Scholar 

  • Jordan, E. and Balmain, K.: 1969, Electromagnetic Waves and Radiating Systems, Prentice Hall, London.

    Google Scholar 

  • Kiendl, M., Semenov, V. S., Kubyshkin, V., Biernat, H. K., Rijnbeek, R. P., and Besser, B. P.: 1997, Space Sci. Rev. 79, 709.

    Google Scholar 

  • Koga, J., Geary, J., Fujinami, T., Newburger, B., Tajima, T., and Rostoker, N.: 1989, J. Plasma Phys. 42, 91.

    Google Scholar 

  • Konopinski, E. J.: 1981, Electromagnetic Fields and Relativistic Particles, McGraw Hill, New York.

    Google Scholar 

  • Lemaire, J. and Roth, M.: 1978, J. Atmospheric Terrest. Phys. 40, 337.

    Google Scholar 

  • Lemaire, J. and Roth, M.: 1991, Space Sci. Rev. 57, 59.

    Google Scholar 

  • Lorrain, P., Corson, D., and Lorrain, F.: 1988 Electromagnetic Fields and Waves, Freeman.

  • Lundin, R. and Dubinen,: 1984, Plant. Space Sci. 32, 745.

    Google Scholar 

  • Lundin, R. and Evans, D.: 1985, Plant. Space Sci. 33, 1389.

    Google Scholar 

  • Lyons, L.: 1992, Rev. Geophys. Space Phys. 30, 95.

    Google Scholar 

  • Matsumoto, H., Nagano, I., Anderson, R. R., Kojima, H., Hashimoto, K., Tsutsui, M., Okada, T., Kimura, I., Omura, Y., and Okada, M.: 1994, J. Geomag. Geoelectr. 46, 59.

    Google Scholar 

  • Matsumoto, H. and Usui, H.: 1997, Geophys. Res. Lett. 24, 49.

    Google Scholar 

  • McIlwain, C. E.: 1975, in Hultqvist and Stenflo (eds.), Physics of the Hot Plasma, Plenum Press, New York.

    Google Scholar 

  • Morfill, G. and Scholer, M.: 1973, Space Sci. Rev. 15, 267.

    Google Scholar 

  • Morse, P. M. and Feshbach, H.: 1953, Methods of Theoretical Physics, McGraw Hill, New York.

    Google Scholar 

  • Mozer, F. S.: 1984, Geophys. Res. Lett. 11, 135.

    Google Scholar 

  • Mozer, F. S.: 1986, Geophys. Res. Lett. 13, 235.

    Google Scholar 

  • Nishida, A. Mukai, T., Yamamoto, T., Saito, Y., Kokubun, S., and Maezawa, K.: 1995, J. Geophys. Res. 100, 23663.

    Google Scholar 

  • Olson, J. and Rostoker, G.: 1978, J. Geophys. Res. 83, 2481.

    Google Scholar 

  • Owen, C. J. and Cowley, S. W. H.: 1991, J. Geophys. Res. 96, 5565.

    Google Scholar 

  • Panofsky, W. and Phillips, M.: 1962, Classical Electricity and Magnetism, Addison-Wesley, New York.

    Google Scholar 

  • Peter, W.: 1981, ‘Plasma Motion across a Magnetic Field’, Ph.D. dissertation, University Cal. Irvine.

  • Peter, W. and Rostoker, N.: 1982, Phys. Fluids 25, 730.

    Google Scholar 

  • Petscheck, H. E.: 1964, NASA SP-50, p. 425.

  • Phan, T.-D and Paschmann, G.: 1996, J. Geophys. Res. 101, 7801.

    Google Scholar 

  • Phan, T.-D, Paschmann, G., Baumjohann, W., Sckopke, N., and Lühr, H.: 1994, J. Geophys. Res. 99, 121.

    Google Scholar 

  • Phan, T.-D., Paschmann, G., and Sonnerup, B. U. Ó.: 1996, J. Geophys. Res. 101, 7817.

    Google Scholar 

  • Plonsey, R. and Collin, R.: 1961, Principles and Applications of Electrodynamic Fields, McGraw-Hill, New York.

    Google Scholar 

  • Pulkkinen, T. I., Baker, D. N., Owen, C. J., and Slavin, J.A.: 1996, J. Geomag. and Geoelect., 48, 455.

    Google Scholar 

  • Ramo, S. and Whinnery, J. R.: 1953, Fields and Waves in Modern Radio, John Wiley, New York.

    Google Scholar 

  • Reiff, P., Hill, T. W., and Birch, J. L.: 1977, J. Geophys. Res. 82, 479.

    Google Scholar 

  • Rosenbauer, H., Grünwald, Montgomery, M. D., Paschmann, G., and Sckopke, N.: 1975, J. Geophys. Res. 80, 2723.

    Google Scholar 

  • Rostoker, G. and Samson, J.: 1984, Geophys. Res. Lett. 11, 271.

    Google Scholar 

  • Rostoker, G., Spadinger, I., and Samson, J. D.: 1984, J. Geophys. Res. 89, 6749.

    Google Scholar 

  • Russell, C.: 1977, J. Geophys. Res. 82, 1625.

    Google Scholar 

  • Sanders, G. D., Maher, L. J., and Freeman, J. W.: 1980, J. Geophys. Res. 85, 4607.

    Google Scholar 

  • Schmidt, G.: 1960, Phys. Fluids 3, 961.

    Google Scholar 

  • Schmidt, G.: 1979, Physics of High Temperature Plasmas, Academic Press, New York.

    Google Scholar 

  • Sckopke, N. et al.: 1981, J. Geophys. Res. 86, 2099.

    Google Scholar 

  • Semenov, V., Kubyshkin, I. V., Lebedeva, V. V., Sidneva, M. V., Biernat, H. K., Heyn, M. F., Besser, B. P., and Rijnbeek, R. P.: 1992, J. Geophys. Res. 97, 4251.

    Google Scholar 

  • Siscoe, G.: 1987, in T. Chang (ed.), Physics of Space Plasma, SPI Conf. Proc. 7, 3.

  • Slavin, J. A., Smith, E. J., Sibeck, D. G., Baker, D. N., Zwickl, R. D., and Akasofu, S.-I.: 1985, J. Geophys. Res. 90, 10875.

    Google Scholar 

  • Slavin, J. A., Daly, P. W., Smith, E. J., Sanderson, T. R., Wenzel, K.-P., Lepping, R. P., and Kroehl, H. W.: 1987, in A. T. Y. Lui (ed.), Magnetotail Physics, John Hopkins Press, New York, p. 59.

    Google Scholar 

  • Sonnerup, B.: 1985, in M. Kundu and G. Holman (eds.), Unstable Current Systems and Plasma Instabilities, D. Reidel Publ. Co., Dordrecht, Holland, p. 5.

    Google Scholar 

  • Sonnerup, B. U. Ö., Paschmann, G., Papamastorakis, I., Sckopke, N., Haerendel, G., Bame, S. J., Asbridge, J. R., Gosling, J. T., and Russell, C. T.: 1981, J. Geophys. Res. 86, 10049.

    Google Scholar 

  • Sonnerup, B., Paschmann, G., and Phan, T.-D.: 1995, in Song, Sonnerup, and Thomsen (eds.), Physics of the Magnetopause, AGU Mono. 90, 167.

  • Southwood, D. J., Farrugia, C. J., and Saunders, M. A.: 1988, Plant. Space Sci. 36, 503.

    Google Scholar 

  • Spreiter, J. R. and Alksne, A. Y.: 1969, Physics of the Magnetosphere, D. Reidel Publ. Co., Dordrecht, Holland, p. 11.

    Google Scholar 

  • Stern, D.: 1995, SPA Section Newsletter, Vol. II, 22 December. and EOS 77, 165.

  • Vasyliunas, V. M.: 1975, Rev. Geophys. Space Phys. 13, 303.

    Google Scholar 

  • Williams, D. J., Fritz, T. A., Wilken, B., and Keppler, E.: 1979, J. Geophys. Res. 84, 6385.

    Google Scholar 

  • Woch, J. and Lundin, R.: 1992, J. Geophys. Res. 97, 1431.

    Google Scholar 

  • Yamamoto, T., Shiokawa, K., and Kokubun, S.: 1994, Geophys. Res. Lett. 21, 2875.

    Google Scholar 

  • Yamamoto, T. Matsuoka, A., Tsuruda, K., Hayakawa, H., Nishida, A., Nakamura, M., and Kokubun, S.: 1994, Geophys. Res. Lett. 21, 2879.

    Google Scholar 

  • Zwan, B. J. and Wolf, R.: 1976, J. Geophys. Res. 81, 1636.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heikkila, W.J. Cause and Effect At the Magnetopause. Space Science Reviews 83, 373–434 (1998). https://doi.org/10.1023/A:1005035815122

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005035815122

Keywords

Navigation