Skip to main content
Log in

Microstructural assessment of laser nitrided Ti-6Al-4V alloy

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A microstructural study of the phases developed during the laser nitriding of a Ti-6Al-4V alloy by, using a CL5 continuous CO2 laser with a spinning beam and concentration of 80% nitrogen, was undertaken. The vertical sections, perpendicular to the melt track were examined by optical microscopy and scanning electron microscopy (SEM), while specimens for X-ray diffractometry (XRD), X-ray photospectroscopy (XPS) and transmission electron microscopy/selected area electron diffraction (TEM/SAED), were taken parallel to the melt track. In this way the variation in microstructure as a function of depth from the laser treated surface, was studied. This supplemented XRD and XPS investigations undertaken previously. Two zones were identified. Zone 1, within 50 μm of the surface, contained well defined dendrites of fcc TiN0.8, plus hcp TiN0.3 and hcp α′Ti. Zone 2, below 50 μm, consisted of needles of hcp α′Ti. From a consideration of the hardness profiles in Zone 2, it is suggested that at the top of the zone, the α′ phase is, in fact, a solid solution containing 3–4% N, which decreased to <1% N at the bottom of the zone. The TEM/SAED study permitted the three phases fcc TiN0.8, hcp TiN0.3 and hcp α′Ti to be identified through a combination of morphology and SAED patterns. This also showed that the fccTiN0.8 contained fringes, which were considered to be stacking fault fringes and allowed this phase to be readily recognized in the TEM. The presence of stacking faults may be associated with the high nitrogen concentration of 80% used for the laser nitriding in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. H. Morton, T. Bell, A. Weisheit, B. L. Mordike and K. Sagoo, Surface Modification Technologies V, Proc. of 5th Int. Conf., edited by T. S. Sudarshan and J. F. Braza (Inst. Mat, London, 1992) p. 593.

    Google Scholar 

  2. C. W. Draper and J. M. Poate, Int. Met. Rev. 30 (1985) 85.

    Google Scholar 

  3. S. Katayama, A. Matsunawa, A. Morimoto, S. Ishimoto and Y. Avata, Proc. Int. Conf. Applied Laser Electro-optics 1983, Laser Inst. of America, p. 127.

  4. T. Bell, H. W. Bergmann, J. Lanagan, P. H. Morton and A. M. Staines, Surf. Eng. 2 (1986) 133.

    Google Scholar 

  5. H. S. Ubhi, T. N. Baker, P. Holdway and A. W. Bowen, Proc. 6th World Conf. On Titanium, edited by P. Lacombe, R. Tricot and G. Beranger (Les Editions de Physique, Paris 3, 1988) p. 1687.

    Google Scholar 

  6. V. M. Weerasihge, D. R. F. West and M. Czajlik, Mat. Sci. Forum 102/104 (1992) 401.

    Google Scholar 

  7. S. Mridha and T. N. Baker, Mat. Sci. and Eng. A188 (1994) 229.

    Google Scholar 

  8. H. Xin, S. Mridha and T. N. Baker, J. of Mat. Sci. 31 (1996) 22.

    Google Scholar 

  9. A. I. P. Nwobu, R. D. Rawlings and D. R. F. West, Acta Mater. 47 (1999) 631.

    Google Scholar 

  10. S. Z. Lee and H. W. Bergmann, Proc. 6th World Conf. on Titanium, edited by P. Lacombe, R. Tricot and G. Beranger (Les Editions de Physique, Paris 3, 1988) p. 1811.

    Google Scholar 

  11. C. Hu, H. Xin, L. M. Watson and T. N. Baker, Acta Mater. 45 (1997) 4311.

    Google Scholar 

  12. H. Xin, L. M. Watson and T. N. Baker, ibid. 46 (1998) 1949.

    Google Scholar 

  13. R. Hutchings, Mater. Lett 1 (1983) 137.

    Google Scholar 

  14. M. K. Hibbs, B. O. Johansson, J. E. Sundgren and U. Helmersson, Thin Solid Films 122 (1984) 115.

    Google Scholar 

  15. M. K. Hibbs, J. E. Sundgren, B. E. Johansson and B. O. Johansson, Acta Metall. 33 (1985) 797.

    Google Scholar 

  16. C. Hu, S. Mridha, H. S. Ubhi, P. Holdway, A. W. Bowen and T. N. Baker, Proc. 8th Int. Conf. on Titanium, Vol. 3, edited by P. A. Blenkinsop, W. J. Evans and H. W. Flower, Inst. Mat. (London, 1995) p. 1959.

  17. J. E. Sundgren, Thin Solid Films 128 (1985) 21.

    Google Scholar 

  18. W. Lengauer and P. Ettmayer, Mater. Sci. Eng. 105/106 (1988) 257.

    Google Scholar 

  19. R. C. Weast and M. J. Astle (eds.), Handbook of Chemistry and Physics 61st Edn. (CRC Press, Boca Raton, F1, 1980).

    Google Scholar 

  20. H. A. Wriedt and J. L. Murray, in “Phase Diagrams of BinaryTitanium Alloys,” edited by J. L. Murray (ASMInternational, Metals Park, OH, USA, 1987) p. 176.

    Google Scholar 

  21. B. L. Mordike, “Laser Gas Alloying,” edited by C.W. Draper and P. Mazzoldi (Maritinus Nijhoff, Dordrecht, NL, 1986) p. 389.

    Google Scholar 

  22. S. Yerramareddy and S. Bahadur, Wear 157 (1992) 245.

    Google Scholar 

  23. S. Santucci, L. Lozzi, M. Passacantando, P. Picozzi, R. Alfonsetti and R. Diamanti, Thin Solid Films 290/291 (1996) 376.

    Google Scholar 

  24. A. B. Kloosterman and J. TH. M. De hosson, J. Mat. Sci. 32 (1997) 6201.

    Google Scholar 

  25. I. A. Yakubtsov, A. Ariapour and D. D. Perovic, Acta mater 47 (1999) 1271.

    Google Scholar 

  26. M. S. B. Selamat, PhD. Thesis, University of Strathclyde, Glasgow, U.K., 1999.

  27. J-P Bars, E. Etchessahar and J. Debuigne, J. Less Comm. Met. 52 (1977) 51.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xin, H., Hu, C. & Baker, T.N. Microstructural assessment of laser nitrided Ti-6Al-4V alloy. Journal of Materials Science 35, 3373–3382 (2000). https://doi.org/10.1023/A:1004833018817

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004833018817

Keywords

Navigation