Skip to main content
Log in

Temperature dependence of elastic and dielectric properties of (Bi2O3)1 − x(CuO)x oxide glasses

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Oxide glasses with the general formula (Bi2O3)1 - x(CuO)x have been prepared by quick quenching technique. Their longitudinal and shear elastic moduli have been determined by measuring the corresponding ultrasonic wave velocities between 300 and 470 K, which are well below the glass transition temperature of this system. Temperature variation of ultrasonic velocity and attenuation exhibit anomalies around 435 K in glasses with x ≥ 0.3. A nonlinear behaviour is also reflected in the CuO concentration dependent dielectric constant curve around x = 0.3. These anomalies are interpreted in terms of a structural softening (or transformation) taking place in samples having CuO concentration above the critical value. The high dielectric constant of these glasses show very little increase with increase of temperature. Anomalies are also found in the temperature dependence of dielectric constant around 435 K. This behaviour is again considered to be associated with the softening of the glass network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Hirashima, Y. Watanabe and T. Yoshida, J. Non-Cryst. Solids 95 & 96 (1987).

  2. Y. Sakuri and J. Yamaki, J. Electrochem. Soc. 132 (1985) 512.

    Google Scholar 

  3. S. Nakamura and N. Ichinose, J. Non-Cryst. Solids 95 & 96 (1987) 512.

    Google Scholar 

  4. M. E. Lines, J. Appl. Phys. 69 (1991) 6876.

    Google Scholar 

  5. T. Komatsu, R. Sato and K. Matusuita, Appl. Phys. Lett. 54 (1990) 170.

    Google Scholar 

  6. K. B. R. Varma and K. J. Rao, ibid. 54 (1989) 69.

    Google Scholar 

  7. R. C. Baker, W. M. Hurng and H. Steinfink, ibid. 54 (1989) 371.

    Google Scholar 

  8. S. R. Elliot, “Physics of Amorphous Materials,” 2nd ed. (Longman Scientific and Technical, 1990).

  9. W. H. Zachariasen, J. Amer. Chem. Soc. 54 (1932) 3841.

    Google Scholar 

  10. W. A. Phillips (ed), “Amorphous Solids,”(Topics in Current Physics) Vol.24, (Springer-Verlag, 1981).

  11. J. Jachle, L. P. Iiche, W. Arnold and S. Hunklinger, J. Non-Cryst. Solids 20 (1975) 365.

    Google Scholar 

  12. R. C. Buchanan, “Ceramic materials for electronics,” (University of Illinois Press, 1991).

  13. D. K. Burghate, S. G. Moke, W. J. Gawande, S. V. Pakade and S. P. Yawale, Ind. J. Phys. 68A (1994) 141.

    Google Scholar 

  14. N. F. Mott and E. A. Davis “Electronic processes in non. crystalline materials,” 2nd ed. (Oxford University Press, 1971).

  15. E. P. Papadakis in “Physical Acoustics,” Vol. 12, edited by W. P. Mason and R. N. Thurston (Academic Press, NewYork, 1976).

    Google Scholar 

  16. H. J. Mc Skimin, J. Acoust. Soc. Amer. 33 (1961) 12.

    Google Scholar 

  17. E. Schreiber, O. L. Anderson and N. Soga, “Elastic constants and their measurements,” (Mc Graw Hill, New York, 1973).

    Google Scholar 

  18. I. G. Austin and N. F. Mott, Advances in Physics 18 (1969) 41.

    Google Scholar 

  19. N. F. Mott, J. Non-Cryst. Solids 1 (1968) 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Philip, J., Rodrigues, N., Sadhukhan, M. et al. Temperature dependence of elastic and dielectric properties of (Bi2O3)1 − x(CuO)x oxide glasses. Journal of Materials Science 35, 229–233 (2000). https://doi.org/10.1023/A:1004785809370

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004785809370

Keywords

Navigation