Skip to main content
Log in

Chemically deposited zinc oxide thin film gas sensor

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Zinc oxide (ZnO) thin films were prepared by a low cost chemical deposition technique using sodium zincate bath. Structural characterizations by X-ray diffraction technique (XRD) and scanning electron microscopy (SEM) indicate the formation of ZnO films, containing 0.05–0.50 μm size crystallites, with preferred c-axis orientation. The electrical conductance of the ZnO films became stable and reproducible in the 300–450 K temperature range after repeated thermal cyclings in air. Palladium sensitised ZnO films were exposed to toxic and combustible gases e.g., hydrogen (H2), liquid petroleum gas (LPG), methane (CH4) and hydrogen sulphide (H2S) at a minimum operating temperature of 150 °C; which was well below the normal operating temperature range of 200–400 °C, typically reported in literature for ceramic gas sensors. The response of the ZnO thin film sensors at 150 °C, was found to be significant, even for parts per million level concentrations of CH4 (50 ppm) and H2S (15 ppm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Seiyama, A. Kato, K. Fujiishi and M. Nagatani, Anal. Chem. 34 (1962) 102.

    Google Scholar 

  2. A. Jones, T. A. Jones, B. Mann and J. G. Griffith, Sensors and Actuators 5 (1984) 75.

    Article  Google Scholar 

  3. G. Uozumi, M. Miyayama and H. Yanagida, J. Mater. Sci. 32 (1997) 2991.

    Google Scholar 

  4. S. Pizzini, N. Butta, D. Narducci and M. Palladino, J. Electrochem. Soc. 136 (1989) 1945.

    Google Scholar 

  5. T. Yamazaki, S. Wada, T. Noma and T. Suzuki, Sensors and Actuators B13/14 (1993) 594.

    Google Scholar 

  6. S. Basu and A. Datta, ibid. B22 (1994) 83.

    Google Scholar 

  7. P. Bonasewicz, W. Hirschwald and G. Neumann, Thin Solid Films 142 (1986) 77.

    Google Scholar 

  8. M. Ristov, G. J. Sinadinovski, I. Grozdanov and M. Mitreski, ibid. 149 (1987) 65.

    Google Scholar 

  9. A. Kuroyanagi, Jpn. J. Appl. Phys. 28 (1989) 219.

    Google Scholar 

  10. H. Gopalaswamy and P. J. Reddy, Semicond. Sci. technol. 5 (1990) 980.

    Google Scholar 

  11. A. Ghosh and S. Basu, Mater. Chem. Phys. 27 (1991) 45.

    Google Scholar 

  12. J. S. Kim, H. A. Marzouk, P. J. Reucroft and C. E. Hamrin, JR., Thin Solid Films 217 (1992) 133.

    Google Scholar 

  13. M. Peneza, C. Martucci, V. I. Anisimkin and L. Vasanelli, Mater. Sci. Forum 203 (1996) 137.

    Google Scholar 

  14. A. K. Mukhopadhyay, P. Mitra, D. Chattopadhyay and H. S. Maiti, J. Mater. Sci. Lett. 15 (1996) 431.

    Google Scholar 

  15. A. K. Mukhopadhyay, P. Mitra, A. P. Chatterjee and H. S. Maiti, ibid., in press.

  16. H. Yoneyama, W. B. Li and H. Tamura, in “Chemical Sensors,” edited by T. Seiyama (Kodansha, Tokyo, 1983) p. 113.

    Google Scholar 

  17. P. Mitra, A. P. Chatterjee and H. S. Maiti, Mater. Lett., in press.

  18. B. J. Aylett, in “Comprehensive Inorganic Chemistry,” Vol. 3, edited by J. C. Bailer, H. J. Emeleus, R. Nyholm and A. F. Trottman-Dickenson (Pergamon press, London, 1973) p. 187.

    Google Scholar 

  19. L. G. Berry (ed.), “Powder Diffraction File” (JCPDS, Philadelphia, 1960) Card No. 5–0664.

    Google Scholar 

  20. S. Devi and S. G. Prakash, Pramana-J. Phys. 39 (1992) 145.

    Google Scholar 

  21. J. C. Simpson and J. F. Cordaro, J. Appl. Phys. 63 (1988) 1781.

    Google Scholar 

  22. M. H. Sukker and H. L. Tuller, in “Advances in Ceramics,” Vol. 7, edited by M. F. Yan and A. H. Heuer (American Ceramic Society, Columbus, 1984) p. 71.

    Google Scholar 

  23. P. Esser and W. Gopel, Surf. Sci. 97 (1980) 309.

    Google Scholar 

  24. D. Eger, Y. Goldstein and A. Many, RCA Rev. 36 (1975) 508.

    Google Scholar 

  25. H. Nanto, T. Minami and S. Takata, J. Appl. Phys. 60 (1986) 482.

    Google Scholar 

  26. G. Heiland and D. Koehl, in “Chemical Sensor Technology,” Vol. 1, edited by T. Seiyama (Kodansha, Tokyo, 1988) p. 15.

    Google Scholar 

  27. S. P. S. Arya, A. D'amico and E. Verona, Thin Solid Films 157 (1988) 169.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chatterjee, A.P., Mitra, P. & Mukhopadhyay, A.K. Chemically deposited zinc oxide thin film gas sensor. Journal of Materials Science 34, 4225–4231 (1999). https://doi.org/10.1023/A:1004694501646

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004694501646

Keywords

Navigation