Skip to main content
Log in

Calorimetric Study of CeRu2Ge2 Under Continuously Swept Hydrostatic Pressure up to 8 GPa

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We have implemented AC calorimetric measurements in diamond anvil pressure cells. The range of pressure (0–20 GPa), the excellent hydrostatic conditions of solid 4He used as the pressure transmitting medium associated with the possibility of continuously tuning the pressure at low temperature makes this experiment ideally suited for investigating phase diagrams under pressure and in particular for studying the thermodynamics of correlated metals around a Quantum Critical Point (QCP) where magnetic order is suppressed at absolute zero temperature. We present here results on the heavy fermion compound CeRu2Ge2 up to 8 GPa and down to 2 K. The specific heat anomalies associated with the different magnetic phase transitions are clearly resolved, allowing a precise determination of the magnetic phase diagram. On approaching the QCP close to 7 GPa, we observe a striking broadening of the antiferromagnetic transition associated with an anomalous behavior of the signal phase which could correspond to a change in the nature of this transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. C. Ho, N. E. Phillips, and T. F. Smith, Phys. Rev. Lett. 17, 694 (1966).

    Google Scholar 

  2. D. B. McWhan, J. P. Remeika, S. D. Bader, B. B. Triplett, and N. E. Phillips, Phys. Rev. B 7, 3079 (1973).

    Google Scholar 

  3. A. Eichler and W. Gey, Rev. Sci. Instrum. 50, 1445 (1979).

    Google Scholar 

  4. E. S. Itskevich, V. F. Kraidenov, and V. S. Syzranov, Cryogenics 18, 281 (1978).

    Google Scholar 

  5. A. Eichler, H. Bohn, and W. Gey, Z. Phys. B 38, 21 (1980).

    Google Scholar 

  6. F. Bouquet, Y. Wang, H. Wilhelm, D. Jaccard, and A. Junod, Solid State Commun. 113, 367 (2000).

    Google Scholar 

  7. J. Thomasson, Y. Dumont, J.-C. Griveau, and C. Ayache, Rev. Sci. Instrum. 68, 1514 (1997).

    Google Scholar 

  8. J. Thomasson, Y. Okayama, I. Sheikin, J.-P. Brison, and D. Braithwaite, Solid State Commun. 106, 637 (1998).

    Google Scholar 

  9. J. Thomasson et al., Frontiers of High-Pressure Research, H. D. Hochheimer and R. D. Etters (eds.), Plenum Press, New York (1991), pp. 423-432.

    Google Scholar 

  10. B. Salce, J. Thomasson, A. Demuer, J.-J. Blanchard, J.-M. Martinod, L. Devoille, and A. Guillaume, to be published in Rev. Sci. Instrum.

  11. A. Jayaraman, Rev. Sci. Instrum. 57, 1013 (1986).

    Google Scholar 

  12. Elsa Feher and M. D. Sturge, Phys. Rev. 172, 244 (1968).

    Google Scholar 

  13. J. H. Burnett, H. M. Cheong, and W. Paul, Rev. Sci. Instrum. 61(12), 3904 (1990).

    Google Scholar 

  14. J. Thomasson et al., to be published.

  15. P. F. Sullivan and G. Seidel, Phys. Rev. 173, 679 (1968).

    Google Scholar 

  16. H. Armbrster and W. P. Kiek, Physica B 107, 385 (1981).

    Google Scholar 

  17. E. S. Itskevich and V. F. Kraidenov, Instrum. Exp. Techn. 21, 1640 (1979).

    Google Scholar 

  18. C. K. Chlang et al., Rev. Sci. Instrum. 45 (1974).

  19. J. D. Baloga and C. W. Garland, Rev. Sci. Instrum. 48, 105 (1977).

    Google Scholar 

  20. R. Berman (1969, 1970), in Thermal Conductivity of Solids at Room Temperature and Below, Childs, Ericks, and Powell (eds.), NBS Monogr. 131 (1973).

  21. J. S. Dugdale and J. P. Franck, Phil. Trans. R. Soc. 257, 1 (1964).

    Google Scholar 

  22. S. Raymond, P. Haen, R. Calemczuk, S. Kambe, B. Fåk, P. Lejay, T. Fukuhara, and J. Flouquet, Cond. Mat. 29, 5547 (1999).

    Google Scholar 

  23. H. Wilhelm, K. Alami-Yadri, B. Revaz, and D. Jaccard, Phys. Rev. B 59, 3651 (1999).

    Google Scholar 

  24. B. D. Rainford et al., ILL, Exp. Report N 4-03-898, Grenoble (1999) AFM.

  25. G. S. Innacchione and D. Finotello, Phys. Rev. E 50, 13 (1994).

    Google Scholar 

  26. F. Bouquet, C. Marcenat, R. Calemczuk, A. Erb, A. Junod, M. Roulin, U. Welp, W. K. Kwok, G. W. Crabtree, N. E. Phillips, R. A. Fisher, and A. Schilling, in Proceedings of the ASI Series E356, Physics and Materials Science of Vortex States, 743 (1998), Kluwer Academic Publishers.

  27. F. Bouquet, Ph.D. thesis, University of Grenoble 1, 1998.

  28. B. Bogenberger and H. v. Löhneysen, Phys. Rev. Lett. 74, 1016 (1995).

    Google Scholar 

  29. R. A. Fisher, C. Marcenat, N. E. Phillips, P. Haen, F. Lapierre, P. Lejay, and J. Flouquet, J. Low Temp. Phys. 84, 49 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demuer, A., Marcenat, C., Thomasson, J. et al. Calorimetric Study of CeRu2Ge2 Under Continuously Swept Hydrostatic Pressure up to 8 GPa. Journal of Low Temperature Physics 120, 245–257 (2000). https://doi.org/10.1023/A:1004685711942

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004685711942

Keywords

Navigation