Skip to main content
Log in

The Eta Invariant of Pin Manifolds with Cyclic Fundamental Groups

  • Published:
Periodica Mathematica Hungarica Aims and scope Submit manuscript

Abstract

Let ℓ= 2ν > 1. Let M be an orientable manifold of odd dimension m with \(\pi _1 (M) = \mathbb{Z}_\ell \) whose universal cover \(\tilde M\) is spin. We define a fixed point free action of \(\mathbb{Z}_{2\ell } \) on the product \(\tilde M \times \tilde M{\text{ and let }}N: = \tilde M \times \tilde M/\mathbb{Z}_{2\ell } ;{\text{ }}N\left( M \right)\) is non orientable and admits a natural pin- structure. We express the eta invariant of N(M) in terms of the eta invariant of M and show the map M → N(M) extends to a map of suitably chosen equivariant connective K-theory groups. Let X be a non orientable manifold with \(\pi _1 (X) = \mathbb{Z}_{2\ell } \) of even dimension m ≥ 6 whose universal cover is spin. We show that if X admits a metric of positive scalar curvature, then the moduli space of all metrics of positive scalar curvature on X has an infinite number of arc components. If m \n= 2 mod 4 and if w2(X) = 0, we show X admits a metric of positive scalar curvature if and only if the \(\hat A\) genus of the universal cover \(\tilde X\) vanishes; this establishes the Gromov-Lawson conjecture in this special case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. F. Atiyah, R. Bott and R. Shapiro, Clifford modules, Topology 3 (1964), 3–38.

    Google Scholar 

  2. M. F. Atiyah, V. K. Patodi and I. M. Singer, Spectral asymmetry and Riemannian geometry I, II, III, Math. Proc. Cambr. Phil. Soc. 77 (1975), 43–69; 78 (1975), 405–432; 79 (1976), 71–99.

    Google Scholar 

  3. A. Bahri, M. Bendersky, D. Davis and P. Gilkey, The complex bordism of groups with periodic cohomology, Trans. AMS 316 (1989), 673–687.

    Google Scholar 

  4. A. Bahri and P. Gilkey, The eta invariant, Pinc bordism, and equivariant Spinc bordism for cyclic 2-groups, Pacific Journal 128 (1987), 1–24.

    Google Scholar 

  5. E. Barrera-Yanez, The eta invariant, connective K-theory, and equivariant spin bordism, Ph. D. thesis, University of Oregon, 1997.

  6. A. L. Besse, Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete: 3. Folge, Bd. 10, Springer-Verlag, Berlin, New York, 1987.

    Google Scholar 

  7. B. Botvinnik and P. Gilkey, The eta invariant and metrics of positive scalar curvature, Math. Ann. 302 (1995), 507–517.

    Google Scholar 

  8. B. Botvinnik and P. Gilkey, Metrics of positive scalar curvature on spherical space forms, Canadian Math Journal 48 (1996), 64–80.

    Google Scholar 

  9. B. Botvinnik and P. Gilkey, The Gromov-Lawson-Rosenberg conjecture: the twisted case, Houston Math J. 23 (1997), 143–160.

    Google Scholar 

  10. B. Botvinnik, P. Gilkey and S. Stolz, The Gromov-Lawson-Rosenberg conjecture for groups with periodic cohomology, Journal Differential Geometry 46 (1997), 374–405.

    Google Scholar 

  11. T. Branson and P. Gilkey, Residues of the eta function for an operator of Dirac Type, J. Functional Analysis 108 (1992), 47–87.

    Google Scholar 

  12. H. Donnelly, Eta invariant for G spaces, Indiana Univ. Math. J. 27 (1978), 889–918.

    Google Scholar 

  13. V. Giambalvo, pin and pinc cobordism, Proc. Amer. Math. Soc. 39 (1973), 395–401.

    Google Scholar 

  14. P. Gilkey, The eta invariant and the K-theory of odd dimensional spherical space forms, Invent. Math. 76 (1984), 421–453.

    Google Scholar 

  15. P. Gilkey, The eta invariant for even dimensional pine manifolds, Adv. in Math. 58 (1985), 243–284.

    Google Scholar 

  16. P. Gilkey, The eta invariant and equivariant spinc bordism for spherical space form groups, Can. J. Math. XL (1988), 392–428.

    Google Scholar 

  17. P. Gilkey, The eta invariant and the equivariant unitary bordism of spherical space form groups, Compositio Math. 65 (1988), 33–50.

    Google Scholar 

  18. P. Gilkey, The Geometry of Spherical Space Form Groups, ISBN 9971-50-927-X, World Scientific, Singapore, 1989.

    Google Scholar 

  19. P. Gilkey, Invariance Theory, the Heat Equation, and the Atiyah-Singer Index theorem, (2nd edition), ISBN 0-8493-7874-4, CRC Press, Boca Raton, Florida, 1994.

    Google Scholar 

  20. M. Gromov and H. B. Lawson, Jr., The classification of simply connected manifolds of positive scalar curvature, Annals of Math. 111 (1980), 423–434.

    Google Scholar 

  21. M. Gromov and H. B. Lawson, Jr., Positive scalar curvature and the Dirac operator on complete Riemannian manifolds, Publ. Math. I.H.E.S. 58 (1983), 83–196.

    Google Scholar 

  22. M. Kreck and S. Stolz, Nonconnected moduli spaces of positive sectional curvature metrics, J. Amer. Math. Soc. 6 (1993), 825–850.

    Google Scholar 

  23. S. Kwasik and R. Schultz, Positive scalar curvature and periodic fundamental groups, Comment. Math. Helv. 65 (1990), 271–286.

    Google Scholar 

  24. S. Kwasik and R. Schultz, Fake spherical spaceforms of constant positive scalar curvature, Comment. Math. Helv. 71 (1996), 1–40.

    Google Scholar 

  25. H. B. Lawson and M. L. Michelsohn, Spin Geometry, Princeton Univ. Press, Princeton, 1989.

    Google Scholar 

  26. A. Lichnerowicz, Spineurs harmoniques, C. R. Acad. Sci. Paris 257 (1963), 7–9.

    Google Scholar 

  27. W. J. Oledzki, On the eta invariant of Pin operator on some exotic 4 dimensional projective space, Comp. Math. 78 (1991), 1–27.

    Google Scholar 

  28. W. J. Oledzki, Exotic involutions of Low-dimensional spheres, preprint.

  29. S. Rosenberg, C*-algebras, positive scalar curvature, and the Novikov Conjecture, III, Topology 25 (1986), 319–336.

    Google Scholar 

  30. J. Rosenberg and S. Stolz, Manifolds of positive scalar curvature, in: Algebraic Topology and its Applications, Eds. G. Carlsson, R. Cohen, W.-C. Hsiang and J. D. S. Jones, M. S. R. I. Publicatons, 27, Springer, New York, 1994, 241–267.

    Google Scholar 

  31. J. Rosenberg and S. Stolz, A “stable” version of the Gromov-Lawson conjecture, Contemp. Math. 181 (1995), 405–418.

    Google Scholar 

  32. T. Schick, A counterexample to the (unstable) Gromov-Lawson Rosenberg conjecture, Topology (to appear).

  33. R. Schoen and S.-T. Yau, On the structure of manifolds with positive scalar curvature, Manuscripta Math. 28 (1969), 159–183.

    Google Scholar 

  34. R. Schultz, Positive scalar curvature and odd order Abelian fundamental groups, Proc. AMS 125 (1997), 907–915.

    Google Scholar 

  35. S. Stolz, Splitting certain MSpin module spectra, Topology 33 (1994), 159–180.

    Google Scholar 

  36. S. Stolz, Simply connected manifolds of positive scalar curvature, Ann. of Math. 136 (1992), 511–540.

    Google Scholar 

  37. S. Stolz, Concordance classes of positive scalar curvature metrics (in preparation).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gilkey, P.B. The Eta Invariant of Pin Manifolds with Cyclic Fundamental Groups. Periodica Mathematica Hungarica 36, 139–170 (1998). https://doi.org/10.1023/A:1004629725347

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004629725347

Navigation