Skip to main content
Log in

Genesis of Longitudinal Vortices in Near-Wall Turbulence

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

Using direct numerical simulations of turbulent channel flow, we present new insight into the formation mechanism of near-wall longitudinal vortices. Instability of lifted, vortex-free low-speed streaks is shown to generate, upon nonlinear saturation, new streamwise vortices, which dominate near-wall turbulence production, drag, and heat transfer. The instability requires sufficiently strong streaks (the wall-normal circulation on either side of a streak exceeding 7.6) and is inviscid in nature, despite the proximity of the no-slip wall. Streamwise vortex formation (collapse) is dominated by stretching, rather than Kelvin–Helmholtz rollup, of instability-generated ωx sheets. In turn, direct stretching results from the positive ∂u/∂x (i.e. positive VISA) associated with streak waviness in the(x,z) plane, generated upon finite-amplitude evolution of the sinuous instability mode. Significantly, the three-dimensional features of the (instantaneous) instability-generated vortices agree well with the coherent structures educed ( i.e. ensemble averaged) from fully turbulent flow, suggesting the prevalence of this instability mechanism. These results suggest promising new drag reduction strategies, involving large-scale (hence more durable) control of near-wall flow and requiring no wall sensors or feedback logic.

Sommario. Utilizzando una simulazione numerica diretta di flusso turbolento in un canale vengono presentate nuove prospettive sui meccanismi di formazione di vortici longitudinali vicino alla parete. Si dimostra come l‘instabilità delle bande a bassa velocità e senza vortici generi, fino alla saturazione non lineare, nuovi vortici paralleli al flusso, che dominano la produzione di vorticitá a parete, la resistenza e lo scambio termico. L‘instabilità richiede la presenza di bande sufficientemente forti ed ha natura non viscosa, nonostante la prossimità della parete. La formazione di vortici paralleli al flusso (collasso) è dominata dallo stiramento, piuttosto che da un avvolgimento di Kelvin–Helmholtz, dei ‘fogli’ di ω generati dall' instabilità.A sua volta, lo stiramento deriva da valori positivi di ∂u/∂x (cioèVISA positivi) associati con le onde a bande nel piano(x,z) generate dall' evoluzione in ampiezza finita dei modi di instabilità sinusoidali. E' significativo che le caratteristiche (istantanee) three-dimensional dei vortici generati dall' instabilità concordino bene con le strutture coerenti edotte (cioè ottenute da medie d‘insieme) dal flusso pienamente turbolento, il che suggerisce una prevalenza di questo meccanismo d'instabilità. Questi risultati suggeriscono nuove, promettenti strategie per la riduzione della resistenza, che utilizzino controlli di larga scala (quindi su tempi più lunghi) del flusso a parete e che non necessitino di sensori di parete o di logiche di ritorno.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Townsend, A.A., The Structure of Turbulent Shear Flows, Cambridge, 1956.

  2. Kline, S.J., Reynolds, W.C., Schraub, F.A. and Rundstadler, P.W., ‘The structure of turbulent boundary layers’, J. Fluid Mech. 30 (1967) 741.

    Google Scholar 

  3. Blackwelder, R.F. and Eckelmann, H., ‘Streamwise vortices associated with the bursting phenomenon’, J. Fluid Mech. 94 (1979) 577.

    Google Scholar 

  4. Robinson, S.K., ‘Coherent motions in the turbulent boundary layer’, Ann. Rev. Fluid Mech. 23 (1991) 601.

    Google Scholar 

  5. Kravchenko, A.G., Choi, H. and Moin, P., ‘On the relation of near-wall streamwise vortices to wall skin friction in turbulent boundary layers’, Phys. Fluid A 5 (1993) 3307.

    Google Scholar 

  6. Jeong, J. and Hussain, F., ‘Coherent structures near the wall in a turbulent channel flow’, In: K.S. Chang and H. Choi (eds), Proc. Fifth Asian Congress of Fluid Mech., Taejon, Korea, 1992, pp. 1262.

  7. Jeong, J., Hussain, F., Schoppa, W. and Kim, J., ‘Coherent structures near the wall in a turbulent channel flow’, J. Fluid Mech. 332 (1997) 185.

    Google Scholar 

  8. Kline, S.J. and Robinson, S.K., ‘Quasi-coherent structures in the turbulent boundary layer: Part 1. Status report on a community-wide survey of the data’, In: S.J. Kline and N.H. Afgan (eds), Near-Wall Turbulence Hemisphere, 1990.

  9. Smith, C.R. and Walker, J.D.A. ‘Turbulent wall-layer vortices’, In: S. Green (ed.), Fluid Vortices, Springer, 1994.

  10. Brooke, J.W. and Hanratty, T.J., ‘Origin of turbulence-producing eddies in a channel flow’, Phys. Fluids A 5 (1993) 1011.

    Google Scholar 

  11. Jimenez, J. and Orlandi, P., ‘The rollup of a vortex layer near a wall’, J. Fluid Mech. 248 (1993) 297.

    Google Scholar 

  12. Brown, G.L. and Thomas, A.S.W., ‘Large structure in a turbulent boundary layer’, Phys. Fluids 20 (1977) 5243.

    Google Scholar 

  13. Phillips, W.R.C. and Wu, Z., ‘On the instability of wave-catalysed longitudinal vortices in strong shear’, J. Fluid Mech. 272 (1994) 235.

    Google Scholar 

  14. Jang, P.S., Benney, D.J. and Gran, R.L., ‘On the origin of streamwise vortices in a turbulent boundary layer’, J. Fluid Mech. 169 (1986) 109.

    Google Scholar 

  15. Swearingen, J.D. and Blackwelder, R.F., ‘The growth and breakdown of streamwise vortices in the presence of a wall’, J. Fluid Mech. 182 (1987) 225.

    Google Scholar 

  16. Hamilton, J., Kim, J. and Waleffe, F., ‘Regeneration mechanisms of near-wall turbulence structures’, J. Fluid Mech. 287 (1995) 317.

    Google Scholar 

  17. Schoppa, W. and Hussain, F., ‘Genesis and dynamics of coherent structures in near-wall turbulence’, In: R. Pantons (ed.), Self-sustaining Mechanisms of Wall Turbulence, Computational Mechanics Publications, 1997a, pp. 385.

  18. Kim, J., Moin, P. and Moser, R.D. ‘Turbulence statistics in fully developed channel flow at low Reynolds number’, J. Fluid Mech. 177 (1987) 133.

    Google Scholar 

  19. Jimenez, J. and Moin, P., ‘The minimal flow unit in near-wall turbulence’, J. Fluid Mech. 225 (1991) 213.

    Google Scholar 

  20. Jeong, J. and Hussain, F., ‘On the identification of a vortex’, J. Fluid Mech. 285 (1995) 69.

    Google Scholar 

  21. Hunt, J.C.R., Wray, A.A. and Moin, P., ‘Eddies, Stream, and Convergence Zones in Turbulent Flows’, Center for Turbulence Research Rep., CTR-S88, 1988, p. 193.

  22. Chong, M.S., Perry, A.E. and Cantwell, B.J., ‘A general classification of three-dimensional flow field’, Phys. Fluids A 2 (1990) 765.

    Google Scholar 

  23. Schoppa, W. and Hussain, F., ‘Effective drag reduction by large-scale manipulation of streamwise vortices in near-wall turbulence’, Presented at: 4th AIAA Shear Flow Control Conference, Snowmass CO, AIAA Paper No. AIAA 97-1794.

  24. Jung, W.J., Mangiavacchi and Akhavan, R., ‘Suppression of turbulence in wall-bounded flows by highfrequency spanwise oscillations’, Phys. Fluids A 4 (1992) 1605.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schoppa, W., Hussain, F. Genesis of Longitudinal Vortices in Near-Wall Turbulence. Meccanica 33, 489–501 (1998). https://doi.org/10.1023/A:1004320610285

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004320610285

Navigation