Skip to main content

Advertisement

Log in

Genetic improvement of processing tomatoes: A 20 years perspective

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Over the past 20 years replicated field trials have been conducted on processing tomato varieties by the California Tomato Research Institute and the Israeli Ministry of Agriculture with the objective of identifying superior varieties. Because common check varieties were included in consecutive years, environmental effects could be factored out allowing an estimate of the genetic improvement due to breeding. The results indicate an average genetic gain for yield of 1.54%/yr for California and of 0.4%/yr for Israel. No significant genetic gain in brix was found for California, whereas for Israel, the data indicate an average increase of 0.53%/yr. For the derived trait brix × yield, the overall genetic gain ranged from 0.9%/yr in Israel to 1.5%/yr in California. A significant genetic gain of 1.15%/yr was determined for fruit color in California for the period 1977–87 and of 2.73%/yr for Israel during the years 1985–1995. The improvement in yield is partially due to the increase in the proportion of hybrids in the trials starting from the mid 1980's. The implications of the results for future tomato breeding are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aldrich, P.R. & J. Doebley, 1992. Restriction fragment variation in the nuclear and chloroplast genomes of cultivated and wild Sorghum bicolor. Theor Appl Genet 85: 293-302.

    Google Scholar 

  • Austin, R.B., M.A. Ford & C.L. Morgan, 1989. Genetic improvement in the yield of winter wheat: a further evaluation. J Agric Sci Camb 112: 295-301.

    Google Scholar 

  • Boerma, H.R., 1979. Comparison of past and recently developed soybean cultivars in maturity groups VI, VII and VIII. Crop Sci 19: 611-613.

    Article  Google Scholar 

  • Castleberry, R.M., C.W. Crum & C.F. Krull, 1984. Genetic yield improvement of U.S. maize cultivars under varying fertility and climatic environments. Crop Sci 24: 33-36.

    Article  Google Scholar 

  • Cox, T.S., J.P. Shroyer, L. Ben-Hui, R.G. Sears & T.J. Martin, 1988. Genetic improvement in agronomic traits of hard red winter wheat cultivars from 1919 to 1987. Crop Sci 28: 756-760.

    Article  Google Scholar 

  • Culp, T.W. & C.C. Green, 1992. Performance of obsolete and current cultivars and Pee dee germplasm lines of cotton. Crop Sci 32: 35-41.

    Article  Google Scholar 

  • DeBlock, M., J. Botterman, M. van de Wiele, J. Dockx, C. Thoen, V. Gossele, N. Rao Movva, C. Thompson, M. van Montagu & J. Leemans, 1987. Engineering herbicide resistance in plants by expression of a detoxifying enzymes. EMBO J 6: 2513-2518.

    CAS  Google Scholar 

  • Doggett, H., 1988. Sorghum. 2nd ed. John Wiley and Sons, Inc. New York.

    Google Scholar 

  • Duvick, D.N., 1984. Progress in conventional plant breeding. In: J.P. Gustafson (Ed), Gene Manipulation in Plant Breeding, pp. 17-31. Plenum Publishing Corporation, 233 Spring Street, New York, NY 10013.

    Google Scholar 

  • Duvick, D.N., 1986. Plant breeding: past achievements and expectations for the future. Econ Bot 40(3): 289-297.

    Google Scholar 

  • Duvick, D.N., 1992. Genetic contributions to advances in yield of U.S. maize. Maydica 37: 69-79.

    Google Scholar 

  • Eshed, Y.G. Gera & D. Zamir, 1996. A genome-wide search for wild-species alleles that increase horticultural yield of processing tomatoes. Theor Appl Genet 93: 877-886.

    Article  CAS  Google Scholar 

  • Feil, B., 1992. Breeding progress in small grain cereals-a comparison of old and modern cultivars. Plant Breeding 108: 1-11.

    Article  Google Scholar 

  • Fillatti, J.J, J. Kiser, R. Rose & L. Comai, 1987. Efficient transformation of tomato and the introduction and expression of a gene for herbicide tolerance. In: D.J. Nevins & R.A. Jones (Eds), Plant Biology, vol 4: Tomato biotechnology. Liss, New York, pp. 199-201.

    Google Scholar 

  • Frey, K.J., 1971. Improving crop yields through plant breeding. Amer Soc Agron Spec Publ 20: 15-58.

    Google Scholar 

  • Fulton, T.M., T. Beck-Bunn, D. Emmatty, Y. Eshed, J. Lopez, V. Petiard, J. Uhlig, D. Zamir & S.D. Tanksley, 1997. QTL analysis of an advanced backcross of Lycopersicon previvianum to the cultivated tomato and comparisons with QTLs found in other wild species. Theor Appl Genet 95: 881-894.

    Article  CAS  Google Scholar 

  • Gould, W.A., 1992. Tomato production. Processing and technology CTI publications INC.

  • Griffing, B., 1990. Use of controlled-nutrient experiment to test heterosis hypotheses. Genetics 126: 753-767.

    PubMed  CAS  Google Scholar 

  • Gymer, P.T., 1981. The achievements of 100 years of barley breeding. In: Barley genetics IV, 112-117. Proc. Fourth Int. Barley Genetics Symp. Edinburgh.

    Google Scholar 

  • Hallauer, A.R., 1973. Hybrid development and population improvement in maize by reciprocal full-sib selection. Egypt J Genet Cytol 2: 84-101.

    Google Scholar 

  • Hanna, G.C., 1971. Breeding tomatoes for mechanical harvesting in California. Genet Agr (3-4): 379-390.

    Google Scholar 

  • Hewitt J.D. & M.A. Stevens, 1981. Growth analysis of two tomato genotypes differing in total fruit solids content. J Amer Soc Hort Sci 106(6): 723-727.

    Google Scholar 

  • Holland, J.B. & E.T. Bingham, 1994. Genetic improvement for yield and fertility of alfalfa cultivars representing different eras of breeding. Crop Sci 34: 953-957.

    Article  Google Scholar 

  • Hueg Jr., W.F., 1977. Focus on the future with an eye to the past. In ‘Agronomists and food. Contribution and Challenges’. Amer Soc Agron Special Publication, no 30, Madison, Wisconsin.

  • lbarbia E.A. & V.N. Lambeth, 1969. Inheritance of soluble solids in a large/small-fruited tomato cross. J Amer Soc Hort Sci 94: 496-498.

    Google Scholar 

  • Kalloo, G., 1991. Genetic improvement of tomato. Monogr on Theor Appl Genet 14.

  • Kramer, M.G. & K. Redenbaugh, 1994. Commercialization of a tomato with an antisense polygalacturonase gene: The FLAVR SAVR-TM tomato story. Euphytica 79(3): 293-297.

    Article  Google Scholar 

  • Lower, R.L. & A.E. Thompson, 1967. Inheritance of acidity and solids content of small-fruited tomatoes. Proc Amer Soc Hort Sci 91: 486-494.

    Google Scholar 

  • Luedders, V.D., 1977. Genetic improvement in yield of soybeans. Crop Sci 17: 971-972.

    Article  Google Scholar 

  • Lynch, P.J. & K.J. Frey, 1993. Genetic improvement in agronomic and physiological traits of oat since 1914. Crop Sci 33: 984-988.

    Article  Google Scholar 

  • Menkir, A., P. Golsbrough & G. Ejeta, 1977. RAPD based assessment of genetic diversity in cultivated races of Sorghum. Crop Sci 37: 564-569.

    Article  Google Scholar 

  • Merideth, Jr., W.R. & R.R. Bridge, 1984. Genetic contributions to yield changes in upland cotton. In: W. Fehr (Ed), Genetic contributions to yield gains of five major crop plants, pp. 75-87. CSSA Special Pub. No. 7, Crop Science Society of America, 677 S. Segoe Road, Madison, WI 53711.

    Google Scholar 

  • Miller, F.R. & Y. Kebede, 1984. Genetic contributions to yield gains in sorghum, 1950 to 1980. In: W. Fehr (Ed), Genetic contributions to yield gains of five major crop plants, pp. 1-14. CSSA Special Pub. No. 7, Crop Science Society of America, 677 S. Segoe Road, Madison, WI 53711.

    Google Scholar 

  • Miller, J.C. & S.D. Tanksley, 1990. RFLP analysis of phylogenetic relationships and genetic variation in the genus Lycopersicon. Theor Appl Genet 80: 437-448.

    CAS  Google Scholar 

  • Nelson, R.S., S.M. McCormick, X. Delannay, P. Dube, J. Layton, E.J. Anderson, M. Kanieska, R.K. Proksch, R.B. Horsch, S.G. Rogers, R.T. Fraley & R.N. Beachy, 1988. Virus tolerance, plant growth and field performance of transgenic tomato plants expressing coat protein from tobacco mosaic virus. Biotechnology 6: 403-409.

    Article  Google Scholar 

  • O'Brien, S.J., 1993. Genetic maps. Cold Spring Harbor Laboratory Press.

  • Paterson, A.H., 1996. DNA marker-assisted crop improvement. In: A.H. Paterson (Ed), Genome Mapping in plants, pp. 71-79, Academic Press, R.G. Landes Company.

  • Pillen, K., 0. Pineda, C.B. Lewis & S.D. Tanksley, 1996. Status of genome mapping tools in the taxon Solanaceae. In: A.H. Paterson (Ed), Genome Mapping in plants, pp. 281-301, Academic Press, R.G. Landes Company.

  • Rick, C.M., 1974. High soluble-solids content in large-fruited tomato lines derived from a wild green-fruited species. Hilgardia 42: 493-510.

    Google Scholar 

  • Riggs, T.J., P.R. Hanson, N.D. Start, D.M. Miles, C.L. Morgan & M.A. Ford, 1981 Comparison of spring barley varieties grown in England and Wales between 1880 and 1980. J Agric Sci 97: 599-610.

    Article  Google Scholar 

  • Russell, W.A., 1986. Contribution of breeding to maize improvement in the United States, 1920s–1980s. Iowa State Journal of research 61(1): 5-34.

    Google Scholar 

  • SAS Institute, Inc., 1994. JMP Users Guide: version 3.0 of JMP. SAS Institute, Carry, N.C.

    Google Scholar 

  • Shah, D., R. Horsch, H. Klee, G. Kishore, J. Winter, N. Turner, C. Hironaka, P. Sanders, C. Gasser, S. Aykent, N. Siegel, S. Rogers & R. Fraley, 1986. Engineering herbicide tolerance in transgenic plants. Science 233: 478-481.

    CAS  PubMed  Google Scholar 

  • Sheehy, R.E, M. Kramer & W.R. Hyatt, 1988. Reduction of polygalacturonase activity in tomato fruits by antisense RNA. Proc Natl Acad Sci USA 85: 8805-8809.

    Article  PubMed  CAS  Google Scholar 

  • Smith, C.J.S., C.F. Watson, J. Ray, C.R. Bird, P.C. Morris, W. Schuh & D. Grierson, 1988. Antisense RNA inhibition of polygalacturonase gene expression in transgenic tomatoes. Nature 334: 724-726.

    Article  CAS  Google Scholar 

  • Specht, J.E. & J.H. Williams, 1984. Contribution of genetic technology to soybean productivity — retrospect and prospect. In: W. Fehr (Ed), Genetic contributions to yield gains of five major crop plants, pp. 49-74. CSSA Special Pub. No. 7, Crop Science Society of America, 677 S. Segoe Road, Madison, WI 53711.

    Google Scholar 

  • Stevens, M.A., 1976. Inheritance of viscosity potential in tomato. J Amer Soc Hort Sci 101(2): 152-155.

    Google Scholar 

  • Stevens, M.A. & J. Rudich, 1978. Genetic potential for overcoming physiological limitations on adaptability, yield, and quality in the tomato. HortScience 13(6): 673-677.

    Google Scholar 

  • Tanksley, S.D. & J. Hewitt, 1988. Use of molecular markers in breeding for soluble solids content in tomato — a re-examination. Theor Appi Genet 75: 811-823.

    CAS  Google Scholar 

  • Tanksley, S.D., S. Grandillo, M.T. Fulton, D. Zamir, Y. Eshed, V. Petiard, J. Lopez & T. Beck-Bunn, 1996. Advanced backcross QTL analysis in a cross between an elite processing line of tomato and its wild relative L. pimpinellifolium. Theor Appl Genet 92: 935-951.

    Article  Google Scholar 

  • Tanksley, S.D., D. Bernacchi, T.M. Fulton, T. Beck-Bunn, D. Emmatty, Y. Eshed, S. Inai, J. Lopez, V. Petiard, H. Sayama, J. Uhlig & D. Zamir, 1997. Comparing the performance of a pair of processing lines nearly isogenic for the I2 gene conferring resistance to Fusarium oxysporum race 2. Rept Tomato Genet Coop 47: 33-35.

    Google Scholar 

  • Tanksley, S.D. D. Bernacchi, T.M. Fulton, T. Beck-Bunn, D. Emmatty, Y. Eshed, S. Inai, J. Lopez, V. Petiard, H. Sayama, J. Uhlig & D. Zamir, 1997. Comparing the effects of linkage drag in a set of processing tomato lines nearly isogenic for the Mi gene for resistance to root knot nematodes. Rept Tomato Genet Coop 47: 35-36.

    Google Scholar 

  • Tollenaar, M., 1989. Genetic improvement in grain yield of commercial maize hybrids grown in Ontario from 1959 to 1988. Crop Sci 29: 1365-1371.

    Article  Google Scholar 

  • Tumer, N.E., K.M. O'Connell, R.S. Nelson, P.R. Sanders, R.N. Beachy, R.T. Fraley & D.M. Shah, 1987. Expression of alfalfa mosaic virus coat protein gene confers crossprotection in transgenic tobacco and tomato plants. EMBO J 6: 1181-1188.

    PubMed  CAS  Google Scholar 

  • U.S. Department of Agriculture, 1992. U.S. Tomato Statistics, 1960–90. Statistical Bulletin 841. Government printing Office, Washington, D.C.

    Google Scholar 

  • Wilcox, J.R.,W.T. Schapaugh, Jr., R.L. Bernard, R.L. Cooper, W.R. Fehr & M.H. Niehaus, 1979. Genetic improvement of soybeans in the Midwest. Crop Sci 19: 803-805.

    Article  Google Scholar 

  • Woodfield, D.R. & J.R. Caradus, 1994. Genetic improvement in white clover representing six decades of plant breeding. Crop Sci 34: 1205-1213.

    Article  Google Scholar 

  • Wych, R.D. & D.C. Rasmusson, 1983. Genetic improvement in malting barley cultivars since 1920. Crop Sci 23: 1037-1040.

    Article  Google Scholar 

  • Wych, R.D. & D.D. Stuthman, 1983. Genetic improvement in Minnesota-adapted oat cultivars released since 1923. Crop Sci 23: 879-881.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grandillo, S., Zamir, D. & Tanksley, S.D. Genetic improvement of processing tomatoes: A 20 years perspective. Euphytica 110, 85–97 (1999). https://doi.org/10.1023/A:1003760015485

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003760015485

Navigation