Skip to main content
Log in

Sulfate-induced isotopic variation in biogenic methane from a tropical swamp without anaerobic methane oxidation

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The oxidative consumption of methane (CH4) generally proceeds with a significant isotope fractionation, and isotopic variations in CH4 observed in sulfate-containing anaerobic sediments have often been interpreted as an indicator of anaerobic methane oxidation at the expense of sulfate. However, we found variations in δ13C value of CH4 depending on sulfate availability in tropical swamp sediments, in which no anaerobic CH4 oxidation was detected. In one sediment, the range of δ13C variation due to sulfate was as large as 20‰. The variations in δ13C of decomposed organic matter and CO2 failed to explain the variation in CH4 δ13C. We postulate a syntrophic linkage between sulfate-reducing and methanogenic bacteria via acetate as a mechanism of the observed δ'13C variation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alperin, M. J., N. E. Blair, D. B. Albert, T. M. Hoehler & C. S. Martens, 1992. Factors that control the stable carbon isotopic composition of methane produced in an anoxic marine sediment. Global biogeochem. Cycles 6: 271–291.

    CAS  Google Scholar 

  • Anderson, B. L., 1996. Modeling isotopic fractionation in systems with multiple sources and sinks with application to atmospheric CH4.Global biogeochem. Cycles 10: 191–196.

    Article  Google Scholar 

  • Barker, J. F. & P. Fritz, 1981. Carbon isotope fractionation during microbial methane oxidation. Nature 293: 289–291.

    Article  CAS  Google Scholar 

  • Coleman, D. D., J. B. Risatti & M. Schoell, 1981. Fractionation of carbon and hydrogen isotopes by methane-oxidizing bacteria. Geochim. cosmochim. Acta 45: 1033–1037.

    Article  CAS  Google Scholar 

  • Hansen, T. A., 1993. Carbon metabolism of sulfate-reducing bacteria. In Odom, J. M. & R. Singleton Jr. (ed.), The Sulfate-Reducing Bacteria: Contemporary Perspectives. Springer-Verlag, New York: 21–40.

    Google Scholar 

  • Kalbasi, M. & M. A. & Tabatabai, 1985. Simultaneous determination of nitrate, chloride, sulfate, and phosphate in plant materials by ion chromatography. Commun. Soil Sci. Plant Anal. 16: 787–800.

    Article  CAS  Google Scholar 

  • King, G. M., 1992. Ecological aspects of methane oxidation, a key determinant of global methane dynamics. Adv.Microb. Ecol. 12: 431–468.

    CAS  Google Scholar 

  • Miyajima, T., E. Wada, Y. T. Hanba & P. Vijarnsorn, 1997. Anaerobic mineralization of indigenous organic matters and methanogenesis in tropical wetland soils. Geochim. cosmochim. Acta 61: 3739–3751.

    Article  CAS  Google Scholar 

  • Mook W. G., J. C. Bommerson & W. H. Staverman, 1974.Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth. Planet. Sci. Lett. 22: 169–176.

    Article  CAS  Google Scholar 

  • Oremland, R. S., 1988. Biogeochemistry of methanogenic bacteria. In A. J. B. Zehnder, (ed.), Biology of Anaerobic Microorganisms. Wiley-Liss, New York: 641–705.

    Google Scholar 

  • Oremland, R. S. & D. G. Capone, 1988. Use of 'specific’ inhibitors in biogeochemistry and microbial ecology.Adv. Microb. Ecol. 10: 285–383.

    CAS  Google Scholar 

  • Ricci M. P, D. A. Merritt, K. H. Freeman & J. M. Hayes, 1994. Acquisition and processing of data for isotope-ratio-monitoring mass spectrometry. Org. Geochem. 21: 561–571.

    Article  PubMed  CAS  Google Scholar 

  • Stevens, C. M., 1993.Isotope abundances in the atmosphere and sources. In: Khalil, M. A. K. (ed.), Atmospheric Methane: Sources, Sinks, and Role in Global Change. Springer-Verlag, Berlin: 62–88.

    Google Scholar 

  • Sugimoto, A. & E. Wada, 1993. Carbon isotope composition of bacterial methane in a soil incubation experiment: Contribution of acetate and CO2/H2. Geochim. cosmochim. Acta 57: 4015–4027.

    Article  CAS  Google Scholar 

  • Sugimoto, A., Xu Hong & E. Wada, 1991. Rapid and simple measurement of carbon isotope ratio of bubble methane using GC/C/IRMS. Mass Spectrosc.39: 261–266.

    CAS  Google Scholar 

  • Vijarnsorn, P., 1992. Problems related to coastal swamp land development in southern Thailand. In Kyuma, K., P. Vijarnsorn & A. Zakaria, (eds.), Coastal Lowland Ecosystems in Southern Thailand and Malaysia. Kyoto University, Kyoto: 3–16.

    Google Scholar 

  • Whiticar, M. J., 1993. Stable isotopes and global budgets. In Khalil, M. A. K. (ed.), Atmospheric Methane: Sources, Sinks, and Role in Global Change. Springer-Verlag, Berlin, Germany: 138–167.

    Google Scholar 

  • Whiticar, M. J., E. Faber, and M. Schoell, 1986. Biogenic methane formation in marine and freshwater environments: CO2 reduction vs. acetate fermentation–Isotope evidence. Geochim. cosmochim. Acta 50: 693–709.

    Article  CAS  Google Scholar 

  • Widdel, F. 1988. Microbiology and ecology of sulfate-and sulfurreducing bacteria. In Zehnder, A. J. B. (ed.), Biology of Anaerobic Microorganisms. Wiley-Liss, New York: 469–585.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyajima, T., Wada, E. Sulfate-induced isotopic variation in biogenic methane from a tropical swamp without anaerobic methane oxidation. Hydrobiologia 382, 113–118 (1998). https://doi.org/10.1023/A:1003409812416

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003409812416

Navigation