Skip to main content
Log in

Uses of alkaline phosphatase activity in evaluating phytoplankton community phosphorus deficiency

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The phosphorus (P) deficiency status of phytoplankton communities was measured using the physiological indicator, alkaline phosphatase activity (APA) and nutrient-addition growth bioassays in field sampled from four northeastern Minnesota lakes and the far western arm of Lake Superior. Phosphorus additions generally reduced APA, while other treatments increased activity. Samples receiving nitrogen (N) and P increased APA after a long lag period. P-addition bioassays of Lake Superior were consistent with phytoplankton P limitation and variations in APA indicated potential seasonal and spatial changes in P deficiency status. The results suggest that APA reliably reflected the phytoplankton P status, but may not provide sufficient information when N or NP limitation is present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ammerman, J. W. & F. Azam, 1985. Bacterial 50nucelotidase in aquatic ecosystems: a novel mechanism of phosphorus regeneration. Science 227: 338–1340.

    Google Scholar 

  • American Public Health Association, 1989. Standard methods for the examination of water and wastewater. 19th edn. Washington, D.C.

  • Axler, R. P. & C. J. Owen, 1994. Measuring chlorophyll and phaeophytin: whom should you believe. Lake & Reservoir Mgmt 8: 143–151.

    Google Scholar 

  • Axler, R. P., C. Rose & C. A. Tikkanen, 1994. Phytoplankton nutrient deficiency as related to atmospheric nitrogen deposition in northern Minnesota acid sensitive lakes. Can. J. Fish. aquat. Sci. 51: 1281–1296.

    Google Scholar 

  • Axler, R. P., C. Rose & C. A. Tikkanen, 1991a. An assessment of phytoplankton nutrient deficiency in Northern Minnesota acid-sensitive lakes. NRRI/TR/91/18 University of Minnesota-Duluth, Duluth, MN.

    Google Scholar 

  • Axler, R. P., C. Larsen, C. Owen & C. Rose, 1991b. Water quality, phytoplankton biomass, and responses of algae to water quality. In: Biological community of Lake Superior: The land/water interface. Report to the Legislative Commission on Minnesota Resources, St. Paul, MN 55115.

  • Berman, T., 1970. Alkaline phosphatases and phosphorus availability in Lake Kinneret. Limnol. Oceanog. 15: 663–674.

    Google Scholar 

  • Berman, T., D. Wynne & B. Kaplan, 1990. Phosphatases revisited: analysis of particle associated enzyme activities in aquatic systems. Hydrobiologia 207: 287–294.

    Google Scholar 

  • Boavida, M. J. & R. T. Heath, 1984. Are the phosphatases released by Daphnia magna components of its food? Limnol. Oceanogr. 29: 641–645.

    Google Scholar 

  • Cembella, A. D., N. J. Antia & P. J. Harrison, 1984. The utilization of inorganic and organic phosphorus compounds as nutrients by eukaryotic microalgae: a multidisciplinary perspective, part 1. Crit. Rev. Microbiol. 10: 317–391.

    PubMed  Google Scholar 

  • Cotner, J. B. & R. G. Wetzel, 1991. 5—0Nucleotidase activity in a eutrophic lake and an oligotrophic lake. Appl. Envir. Microbiol. 57: 1306–1312.

    Google Scholar 

  • Detenbeck, N., 1987. Nutrient cycling and the growth of benthic algae in experimentally acidified Little Rock Lake, WI. Ph.D. Thesis, University of Minnesota, Minneapolis, MN.

  • Elser, J. J. & B. L. Kimmel, 1986. Alteration of phytoplankton phosphorus status during enrichment experiments: implications for interpreting nutrient enrichment bioassay results. Hydrobiologia 133: 217–222.

    Google Scholar 

  • Elser, J. J., M. M. Elser & S. R. Carpenter, 1986. Size fractionation of algal chlorophyll, carbon fixation, and phosphatase activity: relationships with species-specific size distributions and zooplankton community structure. J. Plankton Res. 8: 365–383.

    Google Scholar 

  • Engler, D. L. & O. Sarnelle, 1990. Algal use of sedimentary phosphorus from an Amazon floodplain lake: Implications for total phosphorus analysis in turbid waters. Limnol.Oceanogr. 35: 483–490.

    Google Scholar 

  • Fahnenstiel, G. L., C. L. Schelske & M. J. McCormick, 1990. Phytoplankton photosynthesis and biomass in Lake Superior: effects of nutrient enrichment. Verh. int. Ver. Limnol. 24: 371–377.

    Google Scholar 

  • Fitzgerald, G. P. & T. C. Nelson, 1966. Extractive and enzymatic analyses for limiting or surplus phosphorus in algae. J. Phycol. 2: 32–37.

    Google Scholar 

  • Gage, M. A. & E. Gorham, 1985. Alkaline phosphatase activity as an index of phosphorus status of phytoplankton in Minnesota lakes. Freshwat. Biol. 15: 227–233.

    Google Scholar 

  • Guilford, S. J., L. L. Hendzel, H. J. Kling, E. J. Fee, G. G. C. Robinson, R. E. Heckey & S. E. M. Kasian, 1994. Effects of lake size on phytoplankton nutrient status. Can. J. Fish. aquat. Sci. 51: 2769–2783.

    Google Scholar 

  • Healey, F. P., 1973. Inorganic nutrient uptake and deficiency in algae. Crit. Rev. Microbiol. 3: 69–113.

    Google Scholar 

  • Healey, F. P. & L. L. Hendzel, 1979. Fluorometric measurement of alkaline phosphatase activity in algae. Freshwat. Biol. 9: 429–439.

    Google Scholar 

  • Healey, F. P. & L. L. Hendzel, 1980. Physiological indicators of nutrient deficiency in lake phytoplankton. Can. J. Fish. aquat. Sci. 37: 442–453.

    Google Scholar 

  • Istvanovics, V., K. Pettersson, D. Pierson & R. Bell, 1992. Evaluation of phosphorus deficiency indicators for summer phytoplankton in Lake Erken. Limnol. Oceanogr. 37: 890–900.

    Google Scholar 

  • Jansson, M., 1976. Phosphatases in lakewater. Characteristics of enzymes from phytoplankton and zooplankton by gel filtration. Science 194: 320–321.

    PubMed  Google Scholar 

  • Jansson, M., H. Olsson & K. Petterson, 1988. Phosphatases: origins, characteristics, and function in central Sweden. Hydrobiologia 101: 57–175.

    Google Scholar 

  • Lean, D. R. S., F. R. Pick, S. F. Mitchell, M. T. Downes, P. H. Woods & E. White, 1989. Lake Okaro enclosure experiments: Test ecosystems to evaluate plankton phosphorus and nitrogen deficiency. Arch. Hydrobiol. Beih. Ergebn. Limnol. 32: 195–211.

    Google Scholar 

  • Owen, C. J. & R. P. Axler, 1991. Analytical chemistry and quality assurance manual. NRRI/TR91/05. University of Minnesota, Duluth, Duluth, MN.

    Google Scholar 

  • Perry, M. J., 1972. Alkaline phosphatase activity in subtropical central north Pacific waters using a sensitive fluorometric method. Mar. Biol. 15: 113–119.

    Google Scholar 

  • Petterson, K., 1980. Alkaline phosphatase activity and algal surplus phosphorus and phosphorus-deficiency indicators in Lake Erken. Arch. Hydrobiol. 89: 54–87.

    Google Scholar 

  • Petterson, K. & M. Jansson, 1978. Determination of phosphatase activity in lake water - a study of methods. Verh. int. Ver. Limnol. 20: 1226–1230.

    Google Scholar 

  • Pick, F. R., 1987. Interpretation of alkaline phosphatase activity in L. Ontario. Can. J. Fish. aquat. Sci. 44: 2087–2094.

    Google Scholar 

  • Plumb, R. H. & G. F. Lee, 1974. Phosphate, algae, and taconite tailings in the western arm of Lake Superior. Proc. 17th Conf. Great Lakes Res.: 823–836.

  • Schelske, C. L., L. E. Feldt, M. A. Santiago & E. F. Stoermer, 1972. Nutrient enrichment and its effects on phytoplankton production and species composition in Lake Superior. Proc. 15th Conf. Great Lakes Res. Int. Assoc. Great Lakes Res., pp. 149–165.

  • Shapiro, J. & G. Glass, 1975. Synergistic effects of phosphate and manganese on growth of Lake Superior algae. Verh. int. Ver. Limnol. 19: 550–553.

    Google Scholar 

  • Smith, R. E. & J. S. Kalff, 1981. The effect of phosphorus limitation on algal growth rates: evidence from alkaline phosphatase. Can. J. Fish. aquat. Sci. 38: 1421–1427.

    Google Scholar 

  • St. Amand, A. L., P. A. Soranno, S. R. Carpenter & J. J. Elser, 1989. Algal nutrient deficiency: growth bioassays versus physiological indicators. Lake and Reservoir Mgmt 1: 27–35.

    Google Scholar 

  • Steel, R. G. D. & J. H. Torrie, 1980. Principles and procedures of statistics: A biometric approach. 2nd edn. McGraw-Hill. New York, 633 pp.

    Google Scholar 

  • Suttle, C., W. P. Cochlan & J. G. Stockner, 1991. Size-dependent ammonium and phosphate uptake, and N:P supply ratios in an oligotrophic lake. Can. J. Fish. aquat. Sci. 48: 1226–1234.

    Google Scholar 

  • Vincent, W. F., 1981. Rapid physiological assays for nutrient demand by phytoplankton. II. Phosphorus. J. Plankton Res. 3: 699–710.

    Google Scholar 

  • Vrba, J., V. Vyhnalek, J. Hejzlar & J. Nedoma, 1995. Comparison of phosphorus deficiency indices during a spring phytoplankton bloom in a eutrophic reservoir. Freshwat. Biol. 33: 73–81.

    Google Scholar 

  • Wynne, D. & M. Gophen, 1981. Phosphatase activity in freshwater zooplankton. Oikos 37: 369–376.

    Google Scholar 

  • Wynne, D. & G. Y. Rhee, 1988. Changes in alkaline phosphatase activity and phosphate uptake in P-limited phytoplankton, induced by light intensity and spectral quality. Hydrobiologia 160: 173–178.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rose, C., Axler, R.P. Uses of alkaline phosphatase activity in evaluating phytoplankton community phosphorus deficiency. Hydrobiologia 361, 145–156 (1997). https://doi.org/10.1023/A:1003178502883

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003178502883

Navigation