Skip to main content
Log in

Computer simulation modelling of buoyancy change in Microcystis

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

This paper reviews the development of the SCUM seriesof models and presents additional algorithms forcalculating surface radiation flux and growth. Thefirst SCUM models used data obtained by laboratoryinvestigation of Oscillatoria agardhii byKromkamp & Walsby (1990). However when applied toother species the models became unstable. More recentattempts have taken a different and more theoreticalapproach combining lake mixing and modellingcomponents of SCUM with a buoyancy routine (CYANARA)developed at the Institute of Freshwater Ecology.Model algorithms and sample model results are brieflydescribed. The growing importance of the World Wide Webin modelling is highlighted and explained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Denman, K. L. & A. E. Gargett, 1983. Time and space scales of vertical mixing and advection of phytoplankton in the upper ocean. Limnol. Oceanogr. 28: 801–815.

    Google Scholar 

  • Ferguson, A. J. D., 1997. The role of modelling in the control of toxic blue-green algae. Hydrobiologia 349: 1–4.

    Google Scholar 

  • Gates, D. M., 1972. Man and His Environment: Climate. Harper and Row, New York.

    Google Scholar 

  • Howard, A., 1993a. SCUM–simulation of cyanobacterial underwater movement, Comput. Applic. Biosci. 9: 413–419.

    Google Scholar 

  • Howard, A., 1993b. Modelling the movement and growth of freshwater cyanobacterial blooms. Ph.D. Thesis, School of Geography, University of Leeds, 118 pp.

  • Howard, A., M. J. Kirkby, P. E. Kneale & A. T. McDonald, 1995. Modelling the growth of cyanobacteria (GrowSCUM), Hydrol. Proc. 9: 809–821.

    Google Scholar 

  • Howard, A., A. E. Irish & C. S. Reynolds, 1996. A new simulation of cyanobacterial underwatermovement (SCUM ’96). J. Plankton Res. 18: 1375–1385.

    Google Scholar 

  • Ibelings, B. W. L. R. Mur & A. E Walsby, 1991. Diurnal changes in buoyancy and vertical distribution of Microcystisin two shallow lakes. J. Plankton Res. 13: 419–436.

    Google Scholar 

  • Imberger, J. & P. F. Hamblin, 1982. Dynamics of lakes, reservoirs and cooling ponds. Annu. Rev. Fluid Mech. 14: 153–187.

    Google Scholar 

  • Kromkamp, J. & A. E. Walsby, 1990. A computer model of buoyancy and vertical migration in cyanobacteria. J. Plankton Res. 12: 161–183.

    Google Scholar 

  • Platt, T., S. Sathyendranath & P. Ravindran, 1990. Primary production by phytoplankton: analytic solutions for daily rates per unit area of water surface. Proc. r. Soc. Lond. B. 241: 101–111.

    Google Scholar 

  • Recknagel, F., 1997. ANNA–Artificial Neural Network model for predicting species abundance and succession of blue-green algae. Hydrobiologia 349: 49–59.

    Google Scholar 

  • Reynolds, C. S., 1984. Artificial induction of surface blooms of cyanobacteria. Verh. int. Ver. Limnol. 22: 638–643.

    Google Scholar 

  • Reynolds, C. S., 1987. Cyanobacterial water blooms. In Callow, J. A. (ed.), Advances in Botanical Research. Academic Press, London, 68–143.

    Google Scholar 

  • Reynolds, C. S., 1990. Temporal scales of variability in pelagic environments and the response of phytoplankton. Freshwat. Biol. 23: 25–53.

    Google Scholar 

  • Reynolds, C. S. & A. E. Irish, 1997. Modelling phytoplankton dynamics in lakes and reservoirs: the problem of in-situ growth rates. Hydrobiologia 349: 5–17.

    Google Scholar 

  • Reynolds, C. S. & G. H. M. Jaworski, 1978. Enumeration of natural Microcystispopulations. Br. phycol. J. 13: 269–277.

    Google Scholar 

  • Reynolds, C. S., G. H. M. Jaworski, H. A. Cmiech, & G. F. Leedale, 1981. On the annual cycle of the blue-green alga Microcystis aeruginosaKutz. emend. Elenkin. Phil. Trans. r. Soc. Ser. B. 293: 419–477.

    Google Scholar 

  • Reynolds, C. S., R. L. Oliver & A. E. Walsby, 1987. Cyanobacterial dominance: the role of buoyancy regulation in dynamic lake environments. NZ J. mar. Freshwat. Res. 21: 379–390.

    Google Scholar 

  • Visser, P. M., 1995. Growth and vertical movement of the cyanobacterium Microcystisin stable and artificially mixed water columns. PhD Thesis. University of Amsterdam, 147 pp.

  • Visser, P. M., J. Passarge & L. R. Mur, 1997. Modelling vertical migration of the cyanobacterium Microcystis349: 101–111.

    Google Scholar 

  • Whitehead, P. G., A. Howard & C. Arulmani, 1997. Modelling algal growth and transport in rivers: a comparison of time series analysis, dynamic mass balance and neural network techniques. Hydrobiologia 349: 41–48.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Howard, A. Computer simulation modelling of buoyancy change in Microcystis. Hydrobiologia 349, 111–117 (1997). https://doi.org/10.1023/A:1003053830398

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003053830398

Navigation