Skip to main content
Log in

Genetic suppression of the cereal rye-derived gene Pm8 in wheat

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

The location of wheat gene Pm8 for resistance to powdery mildew in the 1RS chromosome segment derived from cereal rye cultivar Petkus was confirmed. There was reduced transmission of the 1BL.1RS chromosome relative to its wheat homologue in four of the five crosses examined. Pm8 was not expressed in some wheat cultivars and selections which possessed the 1RS chromosome identified by the presence of relevant genes for resistance to the three rusts, due to the presence of a dominant suppressor gene(s) in the wheat genome. The frequency of suppression in 1BL.1RS wheats from Mexico was significantly higher than in a group of wheats (both local and exotic) introduced from China and was probably much higher than in European wheats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bai, D. & D.R. Knott, 1992. Suppression of rust resistance in bread wheat (Triticum aestivum L.) by D-genome chromosomes. Genome 35: 276–282.

    Google Scholar 

  • Bariana, H.S. & R.A. McIntosh, 1993. Cytogenetic studies in wheat. XV. Location of rust resistance genes in VPM1 and their genetic linkage with other disease resistance genes in chromosome 2A. Genome 36: 476–482.

    CAS  PubMed  Google Scholar 

  • Bartos, P. & I. Bares, 1971. Leaf and stem rust resistance of hexaploid wheat cultivars Salzmunder Bartweizen and Weique. Euphytica 20: 435–440.

    Article  Google Scholar 

  • Baum, M. & R. Appels, 1991. The cytogenetic and molecular architecture of chromosome 1R — one of the most widely used sources of alien chromatin in wheat varieties. Chromosoma 101: 1–10.

    Article  PubMed  CAS  Google Scholar 

  • Bennett, F.G.A., 1984. Resistance to powdery mildew in wheat: a review of its use in agriculture and breeding programmes. Plant Pathology 33: 279–300.

    Google Scholar 

  • Chojecki, A.J.S. & M.D. Gale, 1982. Genetic control of glucose phosphate isomerase in wheat and related species. Heredity 49: 337–347.

    CAS  Google Scholar 

  • Friebe, B., M. Heun & W. Bushuk, 1989. Cytological characterisation, powdery mildew resistance and storage protein composition of tetraploid and hexaploid 1BL/1RS wheat-rye translocation lines. Theor Appl Genet 78: 425–432.

    Google Scholar 

  • Gupta, R.B. & K.W. Shephered, 1992. Identification of rye chromosome 1R translocations and substitutions in hexaploid wheats using storage proteins as genetic markers. Plant Breeding 109: 130–140.

    Article  CAS  Google Scholar 

  • Hanusova, R., 1992. Powdery mildew resistance of wheat cultivars with 1B/1R translocation/substitution. In: F.J. Zeller & G. Fishbeck (Eds) Cereal Rusts and Mildews, Proc. 8th Eur. & Medit. Cereal Rusts and Mildews Conf., pp 237–238, Weihenstephan, Germany.

  • Hartmann, H., S. Schiele & T. Lelley, 1994. Isoenzyme electrophoresis, a simple way to identify 1B/1R substitutions and translocations in wheat. Plant Breeding 112: 338–341.

    Article  Google Scholar 

  • Heun, M. & G. Fischbeck, 1987. Identification of wheat powdery mildew resistance genes by analyzing host-pathogen interactions. Plant Breeding 98: 124–129.

    Article  Google Scholar 

  • Johnson, R. & P.L. Dyck, 1984. Resistance to yellow rust in Triticum spelta var. album and bread wheat cultivars Thatcher and Lee. In: Proc. 6th Eur. Mediter. Cereal Rusts Conf. pp 71–74 INRA, No. 25, Grignon, France.

    Google Scholar 

  • Kema, G.H.J., W. Lange & C.H. van Silfhout, 1995. Differential suppression of stripe rust resistance in synthetic wheat hexaploids derived from Triticum turgidum subsp. dicoccoides and Aegilops squarrosa. Phytopathology 85: 425–429.

    Google Scholar 

  • Kerber, E.R. & T. Aung, 1995. Confirmation of nonsuppressor mutation of stem rust resistance in ‘Canthatch’ common wheat. Crop Science 35: 743–744.

    Article  Google Scholar 

  • Kerber, E.R. & G.J. Green, 1980. Suppression of stem rust resistance in the hexaploid wheat cv. Canthatch by chromosome 7DL. Can J Bot 58: 1347–1350.

    Google Scholar 

  • Lutz, J., E. Limpert, P. Bartos & F.J. Zeller, 1992. Identification of powdery mildew resistance genes in common wheat (Triticum aestivum L.) I. Czechoslovakian Cultivars. Plant Breeding 108: 33–39.

    Article  Google Scholar 

  • Ma, H., R.P. Singh & A. Mujeeb-Kazi, 1995. Suppression/expression of resistance to stripe rust in synthetic hexaploid wheat (Triticum turgidum × T. tauschii). Euphytica 83: 87–93.

    Article  Google Scholar 

  • May, C.E. & F. Wray, 1991. A rapid technique for the detection of wheat-rye translocation chromosomes. Genome 34: 486–488.

    Google Scholar 

  • McIntosh, R.A., G. Hart & M. Gale, 1993. Catalogue of gene symbols for wheat. In: Z.S. Li & Z.Y. Zin (Eds) Proc. 8th Int. Wheat Genetics Symp. pp. 1333–1500, Beijing, China.

  • McIntosh, R.A., C.R. Wellings & R.F. Park, 1995. Wheat Rusts: An Atlas of Resistance Genes. CSIRO Australia.

    Google Scholar 

  • Martin, D.J. & B.J. Stewart, 1990. Dough stickiness in rye-derived wheat cultivars. Euphytica 51: 77–86.

    Article  Google Scholar 

  • Mettin, D., W.D. Blüther & G. Schlegel, 1973. Additional evidence on spontaneous 1B/1R wheat-rye substitutions and translocations. In: E.R. Sears & L.M.S. Sears (Eds) Proc. 4th Int. Wheat Genetics Symp. pp. 179–184, University of Missouri, Columbia USA.

    Google Scholar 

  • Quinones, M.A., E.N. Larter & D.J. Samborski, 1972. The inheritance of resistance to Puccinia recondita in hexaploid triticale. Can J Genet Cytol 14: 495–505.

    Google Scholar 

  • Rayburn, A.L. & D.W. Mornhinweg, 1988. Inheritance of a 1BL/1RS wheat-rye translocated chromosome in wheat. Crop Sci 28: 709–711.

    Article  Google Scholar 

  • Rajaram, S., C.E. Mann, G. Ortiz-Ferrara & A. Mujeeb-Kazi, 1983. Adaptation, stability and high yield potential of certain 1B/1R CIMMYT wheats. In: S. Sakamoto (Ed.) Proc. 6th Int. Wheat Genetics Symp. pp. 613–621, Kyoto University, Japan.

    Google Scholar 

  • Ren, S.X., R.A. McIntosh, P.J. Sharp & T.T. The, 1996. A storage protein marker associated with the suppressor of Pm8 for powdery mildew resistance in wheat. Theor & Applied Genet (in press).

  • Rogowsky, P.M., M.E. Sorrells, K.W. Shepherd & P. Langridge, 1993. Characterisation of wheat-rye recombinants with RFLP and PCR probes. Theor Appl Genet 85: 1023–1028.

    Article  CAS  Google Scholar 

  • Stakman, E.C., D.M. Stewart & W.Q. Loegering, 1962. Identification of physiologic races of Puccinia graminis var. tritici. Agricultural Research Service 2–16. United States Department of Agriculture, Washington, D.C.

    Google Scholar 

  • Villareal, R. & S. Rajaram, 1984. Semidwarf Bread Wheat. Names, Parentages, Pedigrees and Origins. CIMMYT, Mexico.

    Google Scholar 

  • Williams, N.D., J.D. Miller & D.L. Klindworth, 1992. Induced mutations of a genetic suppressor of resistance to wheat stem rust. Crop Sci 32: 612–616.

    Article  Google Scholar 

  • Zeller, F.J., 1973. 1B/1R wheat-rye chromosome substitutions and translocations. In: E.R. Sears & L.M.S. Sears (Eds) Proc. 4th Int. Wheat Genetics Symp. pp. 209–221, University of Missouri, Columbia, USA.

    Google Scholar 

  • Zeller, F.J., G. Günzel, G. Fischbeck, P. Gerstenkorn & D. Weipert, 1982. Veränderungen der Backeigenschaften des Weizens durch die Weizen-Roggen-chromosomentranslokation 1B/1R. Getreide Mehl & Brot 36: 141–143.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, S., McIntosh, R. & Lu, Z. Genetic suppression of the cereal rye-derived gene Pm8 in wheat. Euphytica 93, 353–360 (1997). https://doi.org/10.1023/A:1002923030266

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1002923030266

Navigation