Skip to main content
Log in

Technical aspects of multifocal ERG recording

  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

There are a wide range of variables which can influence the quality of the multifocal response. It is possible to place these variables into one of four categories. First, the method of stimulus delivery will determine the field of view, interference levels and the duration of on-state stimulation. Second, data acquisition variables such as electrode type and placement, amplifier specifications and filter bandwidth settings will have a direct impact on waveform shape and on the topographic distribution of signal amplitudes. Third, patient variables such as fixation, pupil dilation and refractive error will also contribute to the multifocal response. Fourth, there are many measurements that can be taken from multifocal recordings. In addition to standard amplitude and implicit time measures (the implicit time measure in the multifocal response is becoming increasingly important particularly in early stages of disease processes), the scalar product measure provides information on waveform shape. The conventional impulse and higher order responses will be different for different modes of stimulation such as Cathode Ray Tube (CRT) and Liquid Crystal Display (LCD) systems and latency shifts will be introduced if not corrected in software. Procedures which could lead to misleading interpretation include artefact rejection, averaging with neighbours and summing of responses. These procedures should be handled with caution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sutter EE, Tran D. The field topography of ERG components in man-I. The photopic luminance response. Vision Res 1992; 32(3): 433–46.

    Article  PubMed  CAS  Google Scholar 

  2. Parks S, Keating D, Evans AL. Wide field functional imaging of the retina. IEE Colloquium on Medical Applications of Signal Processing 1999: 99/107, 9/1-9/6.

  3. Parks S, Keating D, Hammer HM, Evans AL.Wide field functional imaging of the retina. Brit J Op Phot 1999; 2: 2–5.

    Google Scholar 

  4. Esakowitz L, Kriss A, Shawkat F. A comparison of flash electroretinograms recorded from Burian Allen, JET, C-glide, gold foil, DTL and skin electrodes. Eye 1993; 7: 169–71.

    PubMed  Google Scholar 

  5. McCulloch DL, Van Boemel GB, Burchert MS. Comparisons of contact lens, foil, fiber and skin electrodes for pattern electroretinograms. Doc Ophthalmol 1997; 94(4): 327–40.

    PubMed  Google Scholar 

  6. Mohidin N, Yap MK, Jacobs RJ. The repeatability and variability of the multifocal electroretinogram for four different electrode types. Ophthalmic Physiol Opt 1997; 17(6): 530–35.

    Article  PubMed  CAS  Google Scholar 

  7. Coupland SG. Electrodes for clinical Electrophysiological testing. In: Heckenlively JR and Arden GB Eds. Principles and Practice of Clinical Electrophysiology of Vision. St Louis: Mosby, 1991: 177–82.

    Google Scholar 

  8. Job HM, Keating D, Evans AL, Parks S. A three dimensional model of the human eye: the optimisation of electroretinographic signal detection. Med Biol Eng Comp 1999; 37(6): 710–719

    CAS  Google Scholar 

  9. Curcio CA, Sloan KR. Packing geometry of human cone photoreceptors: variation with eccentricity and evidence for local anisotropy. Vis Neurosci 1992; 9(2): 169–80.

    Article  PubMed  CAS  Google Scholar 

  10. Curcio CA, Allen KA, Sloan KR, Lerea CL, Hurley JBm Klock IB, Milam AH. Distribution and morphology of human cone photoreceptors stained with anti-blue opsin. J Comp Neurol 1991; 22: 312(4): 610–24.

    Article  PubMed  CAS  Google Scholar 

  11. Keating D, Parks S, Evans AL, Williamson TH, Elliott AT, Jay JL. The effect of filter bandwidth on the multifocal electroretinogram. Doc.Ophthalmol 1997; 92(4): 291–300.

    CAS  Google Scholar 

  12. Seeliger M, Kretschmann UH, Apfelstedt-Sylla E, Zrenner E. Implicit time topography of multifocal electroretinograms. Invest Ophthalmol Vis Sci 1998; 39: 718–23

    PubMed  CAS  Google Scholar 

  13. Hood DC, Holopigian K, Greenstein V, SeipleW, Li J, Sutter EE, Carr RE. Assessment of local retinal function in patients with retinitis pigmentosa using the multifocal ERG technique. Vision Res 1998; 38(1): 163–179

    Article  PubMed  CAS  Google Scholar 

  14. Parks S, Keating D, Evans AL, Elliott AT, Jay JL. A change in delay of multifocal ERGs is found in retinitis pigmentosa. Invest Ophthalmol Vis Sci 1998; 39(4): S891.

    Google Scholar 

  15. Seeliger M, Kretshmann U, Apfelstedt-Sylla E, Ruther K, Zrenner E. Multifocal electroretinography in retinitis pigmentosa. Amer J Ophthalmol 1998; 125: 214–26.

    Article  CAS  Google Scholar 

  16. Parks S, Keating D, Evans AL. Peripheral Retinal Dysfunction in Age-Related Macular Degeneration, ARVO 2000.

  17. Fortune B, Schneck ME, Adams AJ. Multifocal electroretinogram delays reveal local retinal dysfunction in early diabetic retinopathy. Invest Ophthalmol Vis Sci 1999; 40: 2638–51.

    PubMed  CAS  Google Scholar 

  18. Palmowski AM, Sutter EE, Bearse MA Jr, Fung W. Mapping of retinal function in diabetic retinopathy using the multifocal electroretinogram. Invest Ophthalmol Vis Sci 1997; 38(12): 2586–96.

    PubMed  CAS  Google Scholar 

  19. Marmor MF, Zrenner E. Standard for clinical electroretinography (1994 update). Doc Ophthalmol 1995; 89(3): 199–210.

    Article  PubMed  CAS  Google Scholar 

  20. Parks S, Keating D, Evans AL. Peripheral retinal dysfunction in age related macular degeneration. Invest. Ophthalmol Vis Sci. 2000; 41(4): S163.

    Google Scholar 

  21. Parks S, Keating D. Effects of dilation on the normal range in the Ganzfeld ERG. Invest. Ophthalmol Vis Sci. 1997; 38(4): S878.

    Google Scholar 

  22. Keating D, Parks S, Williamson TH, Elliott AT, Jay JL, Evans AL. The effect of filtering, pupil dilation and retinal blur on the multifocal electroretinogram. Invest. Ophthalmol Vis Sci 1996; 37(3): S346.

    Google Scholar 

  23. Kondo M, Miyake Y, Horigushi M, Suzuki S, Tanikawa A. Recording multifocal electroretinogram on and off responses in humans. Invest Ophthalmol Vis Sci 1998; 39(3): 574–80

    PubMed  CAS  Google Scholar 

  24. Keating D, Parks S, Malloch C, Evans AL. The effects of different stimulus delivery on the multifocal ERG response. Invest. Ophthalmol Vis Sci. 2000; 41(4): S496.

    Google Scholar 

  25. Baseler HA, Sutter EE, Klein SA, Carney T. The topography of visual evoked response properties across the visual field. Electroencephalography and Clinical Neurophysiology 1994; 90: 65–81.

    Article  PubMed  CAS  Google Scholar 

  26. Parks S, Keating D, Williamson TH, Jay JL, Evans AL, Elliott AT. Functional imaging of the retina using the multifocal electroretinogram: a control study, Br J Ophthalmol 1996; 80: 831–834

    PubMed  CAS  Google Scholar 

  27. Hood DC, Li. A technique for measuring individual multifocal ERG records. In: ed. Yager, D., ed. Non invasive assessment of the visual system. Optical Society of America, trends in Optics and Photonics 1997, 11, 33–41.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keating, D., Parks, S. & Evans, A. Technical aspects of multifocal ERG recording. Doc Ophthalmol 100, 77–98 (2000). https://doi.org/10.1023/A:1002723501303

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1002723501303

Navigation