Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-24T05:10:51.124Z Has data issue: false hasContentIssue false

The multivariate Faà di Bruno formula and multivariate Taylor expansions with explicit integral remainder term

Published online by Cambridge University Press:  17 February 2009

Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Faà di Bruno formulæ for higher-order derivatives of a composite function are important in analysis for a variety of applications. There is a substantial literature on the univariate case, but despite significant applications the multivariate case has until recently received limited study. We present a succinct result which is a natural generalization of the univariate version. The derivation makes use of an explicit integralform of the remainder term for multivariate Taylor expansions.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2007

References

[1]Abraham, R. and Robbin, J. W., Transverse Mappings and Flows (W. A. Benjamin, New York, 1967).Google Scholar
[2]Arbogast, L. F. A., Du Calcul des Dérivations (Levrault, Strasbourg, 1800).Google Scholar
[3]Bieberbach, L., Differential Geometry (Johnson Reprint Co., New York, 1968).Google Scholar
[4]Constantine, G. M. and Savits, T. H., “A multivariate Faà di Bruno formula with applications”, Trans. Amer. Math. Soc. 348 (1996) 503520.CrossRefGoogle Scholar
[5]Craik, A. D. D., “Prehistory of Fa's formula”, Amer. Math. Month. 112 (2005) 119130.Google Scholar
[6]Dieudonne, J. A., Infinitesimal Calculus (Houghton Miffin, New York, 1971).Google Scholar
[7]Faà di Bruno, F., “Sullo sviluppo delle funzione”, Annali di Scienze Matematiche e Fisiche 6 (1855) 479480.Google Scholar
[8]Faà di Bruno, F., “Note sur une nouvelle formule de calcul différentiel”, Quart. J. Math. 1 (1857) 359360.Google Scholar
[9]Flanders, H., “From Ford to Faà”, Amer. Math. Month. 108 (2001) 559561.Google Scholar
[10]Fowler, R. H., Statistical Mechanics (Cambridge University Press, Cambridge, 1936).Google Scholar
[11]Gould, H. W., “The generalized chain rule of differentiation with historical notes”, Utilitas Mathematica 61 (2002) 97106.Google Scholar
[12]Johnson, W. P., “The curious history of Faà di Bruno's formula”, Amer. Math. Month. 109 (2002) 217234.Google Scholar
[13]Leipnik, R. and Reid, T., “Multivariable Faà di Bruno formulas”, Elec. Proc. 9th Ann. Intern. Conf. Tech. Colleg. Math. (1996), available at http://archives.math.utk.edu/ICTCM/EP-9.html#C23.Google Scholar
[14]Lukács, E., “Application of Faà di Bruno's formula in mathematical statistics”, Amer. Math. Month. 62 (1955) 340348.Google Scholar
[15]Mishkov, R., “Generalization of the formula of Fa”, Intern. J. Math. Sci. 24 (2000) 481–91.CrossRefGoogle Scholar
[16]Noschese, S. and Ricci, P. E., “Differentiation of multivariable composite functions and Bell polynomials”, J. Comput. Anal. Appl. 5 (2003) 333340.Google Scholar
[17]de la Vallée Poussin, Ch. J., Cours d'Analyse Infinitésimal (Dover, New York, 1946).Google Scholar
[18]Rota, G.-C., “The number of partitions of a set”, Amer. Math. Month. 71 (1964) 498504.CrossRefGoogle Scholar
[19]Rota, G.-C., “Geometric probability”, Math. Intell. 20 (1998) 1116.CrossRefGoogle Scholar
[20]Schwatt, I. J., Introduction to Operations with Series (Chelsea, New York, 1962).Google Scholar
[21]Takács, L., Introduction to the Theory of Queues (Oxford University Press, Oxford, 1962).Google Scholar
[22]Whitney, H., Geometric Integration Theory (Princeton University Press, Princeton, 1957).CrossRefGoogle Scholar
[23]Withers, C. S., “A chain rule for differentiation with application to multivariate hermite polynomials”, Bull. Austral. Math. Soc. 30 (1984) 247250.CrossRefGoogle Scholar
[24]Yang, W. C., “Derivatives are essentially integer partitions”, Discr. Math. 222 (2000) 235245.CrossRefGoogle Scholar