Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-28T00:42:25.829Z Has data issue: false hasContentIssue false

Abnormal methylation of KCNQ1OT1 and differential methylation of H19 imprinting control regions in human ICSI embryos

Published online by Cambridge University Press:  02 February 2012

Rita Khoueiry
Affiliation:
INSERM U846, Institut Cellule Souche et Cerveau, 18 Av Doyen Lépine, 69500 Bron, France.
Samira Ibala-Romdhane
Affiliation:
Service Cytogénétique et Biologie de la Reproduction, Hôpital Farhat Hached, 4000 Sousse, Tunisie.
Mohamed Al-Khtib
Affiliation:
INSERM U846, Institut Cellule Souche et Cerveau, 18 Av Doyen Lépine, 69500 Bron, France.
Thierry Blachère
Affiliation:
INSERM U846, Institut Cellule Souche et Cerveau, 18 Av Doyen Lépine, 69500 Bron, France.
Jacqueline Lornage
Affiliation:
INSERM U846, Institut Cellule Souche et Cerveau, 18 Av Doyen Lépine, 69500 Bron, France. Service de Biologie de la Reproduction, Hôpital Femme Mère Enfants, 69500 Bron, France.
Jean-.François Guérin
Affiliation:
INSERM U846, Institut Cellule Souche et Cerveau, 18 Av Doyen Lépine, 69500 Bron, France. Service de Biologie de la Reproduction, Hôpital Femme Mère Enfants, 69500 Bron, France.
Annick Lefèvre*
Affiliation:
INSERM U846, Institut Cellule Souche et Cerveau, 18 Av Doyen Lépine, 69500 Bron, France. INSERM U846, Institut Cellule Souche et Cerveau, 18 Av Doyen Lépine, 69500 Bron, France.
*
All correspondence to: Annick Lefèvre. INSERM U846, Institut Cellule Souche et Cerveau, 18 Av Doyen Lépine, 69500 Bron, France. Tel: +33 4 78 77 28 79. Fax: +33 4 78 77 72 64. e-mail: annick.lefevre@inserm.fr

Summary

To evaluate the integrity of genomic imprinting in embryos that failed to develop normally following intracytoplasmic sperm injection (ICSI), we analysed the methylation profile of H19 and KCNQ1OT1 imprinting control regions, H19DMR and KvDMR1 respectively, in high-grade blastocysts and in embryos that exhibited developmental anomalies. Significant hypomethylation of KvDMR1 was specifically observed in 5/5 atypical blastocysts graded BC, which probably reflected the vulnerability of the imprint in the inner cell mass during the methylation remodelling phase in the early embryo. In addition, KvDMR1 was hypermethylated in 2/5 CC graded atypical blastocysts and in 2/8 embryos that exhibited developmental delay. H19DMR appeared differentially methylated in all groups of embryos. DNA methyltransfersase 1 (DNMT1) expression was similar in most of the tested embryos and could not account for the abnormal methylation patterns of KvDMR1 observed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bell, A.C. & Felsenfeld, G. (2000). Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature 405, 482–5.CrossRefGoogle ScholarPubMed
Borghol, N., Lornage, J., Blachere, T.et al. (2006). Epigenetic status of the H19 locus in human oocytes following in vitro maturation. Genomics 87, 417–26.CrossRefGoogle ScholarPubMed
DeBaun, M.R., Niemitz, E.L. & Feinberg, A.P. (2003). Association of in vitro fertilization with Beckwith-Wiedemann syndrome and epigenetic alterations of LIT1 and H19. Am. J. Hum. Genet. 72, 156–60.CrossRefGoogle ScholarPubMed
Delaval, K. & Feil, R. (2004). Epigenetic regulation of mammalian genomic imprinting. Curr. Opin. Genet. Dev. 14, 188–95.CrossRefGoogle ScholarPubMed
Fauque, P., Jouannet, P., Lesaffre, C.et al. (2007). Assisted reproductive technology affects developmental kinetics, H19 imprinting control region methylation and H19 gene expression in individual mouse embryos. BMC Dev. Biol. 7, 116.CrossRefGoogle ScholarPubMed
Gardner, D.K., Lane, M., Stevens, J.et al. (2000). Blastocyst score affects implantation and pregnancy outcome: towards a single blastocyst transfer. Fertil. Steril. 73, 1155–8.CrossRefGoogle ScholarPubMed
Geuns, E., De Rycke, M., Van Steirteghem, A.et al. (2003). Methylation imprints of the imprint control region of the SNRPN-gene in human gametes and preimplantation embryos. Hum. Mol. Genet. 12, 2873–9.CrossRefGoogle ScholarPubMed
Geuns, E., De Temmerman, N., Hilven, P.et al. (2007). Methylation analysis of the intergenic differentially methylated region of DLK1-GTL2 in human. Eur. J. Hum. Genet. 15, 352–61.CrossRefGoogle ScholarPubMed
Gicquel, C., Gaston, V., Mandelbaum, J.et al. (2003). In vitro fertilization may increase the risk of Beckwith-Wiedemann syndrome related to the abnormal imprinting of the KCN1OT gene. Am. J. Hum. Genet. 72, 1338–41.CrossRefGoogle Scholar
Girault, I., Tozlu, S., Lidereau, R.et al. (2003). Expression analysis of DNA methyltransferases 1, 3A, and 3B in sporadic breast carcinomas. Clin. Cancer Res. 9, 4415–22.Google ScholarPubMed
Gomes, M.V., Huber, J., Ferriani, R.A.et al. (2009). Abnormal methylation at the KvDMR1 imprinting control region in clinically normal children conceived by assisted reproductive technologies. Mol. Hum. Reprod. 15, 471–7.CrossRefGoogle ScholarPubMed
Hark, A.T., Schoenherr, C.J., Katz, D.J.et al. (2000). CTCF mediates methylation-sensitive enhancer–blocking activity at the H19/Igf2 locus. Nature 405, 486–9.CrossRefGoogle ScholarPubMed
Hayward, B.E., De Vos, M., Judson, H., et al. (2003). Lack of involvement of known DNA methyltransferases in familial hydatidiform mole implies the involvement of other factors in establishment of imprinting in the human female germline. BMC Genet. 4, 28.CrossRefGoogle ScholarPubMed
Hirasawa, R., Chiba, H., Kaneda, M.et al. (2008). Maternal and zygotic Dnmt1 are necessary and sufficient for the maintenance of DNA methylation imprints during preimplantation development. Genes Dev. 22, 1607–16.CrossRefGoogle ScholarPubMed
Kanber, D., Buiting, K. & Zeschnigk, M. (2009). Low frequency of imprinting defects in ICSI children born small for gestational age. Eur. J. Hum. Genet. 17, 22–9.CrossRefGoogle ScholarPubMed
Khoueiry, R., Ibala-Rhomdane, S., Mery, L., et al. (2008). Dynamic CpG methylation of the KCNQ1OT1 gene during maturation of human oocytes. J. Med. Genet. 45, 583–8.CrossRefGoogle ScholarPubMed
Li, X., Ito, M., Zhou, F., et al. (2008). A maternal-zygotic effect gene, Zfp57, maintains both maternal and paternal imprints. Dev. Cell 15, 547–57.CrossRefGoogle ScholarPubMed
Lighten, A.D., Hardy, K., Winston, R.M.et al. (1997). IGF2 is parentally imprinted in human preimplantation embryos. Nat. Genet. 15, 122–3.CrossRefGoogle ScholarPubMed
Liu, J.H., Yin, S., Xiong, B.et al. (2008). Aberrant DNA methylation imprints in aborted bovine clones. Mol. Reprod. Dev. 75, 598607.CrossRefGoogle ScholarPubMed
Livak, K.J. & Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25, 402–8.CrossRefGoogle ScholarPubMed
Mackay, D.J., Callaway, J.L., Marks, S.M.et al. (2008). Hypomethylation of multiple imprinted loci in individuals with transient neonatal diabetes is associated with mutations in ZFP57. Nat. Genet. 40, 949–51.CrossRefGoogle ScholarPubMed
Manipalviratn, S., DeCherney, A. & Segars, J. (2009). Imprinting disorders and assisted reproductive technology. Fertil. Steril. 91, 305–15.CrossRefGoogle ScholarPubMed
Mann, M.R, Chung, Y.G., Nolen, L.D.et al. (2003). Disruption of imprinted gene methylation and expression in cloned preimplantation stage mouse embryos. Biol. Reprod. 69, 902–14.CrossRefGoogle ScholarPubMed
Market-Velker, B.A., Zhang, L., Magri, L.S.et al. (2009). Dual effects of superovulation: loss of maternal and paternal imprinted methylation in a dose-dependent manner. Hum. Mol. Genet. 19, 3651.CrossRefGoogle Scholar
Mayer, W., Niveleau, A., Walter, J.et al. (2000). Demethylation of the zygotic paternal genome. Nature 403, 501–2.CrossRefGoogle ScholarPubMed
Ono, R., Nakamura, K., Inoue, K.et al. (2006). Deletion of Peg10, an imprinted gene acquired from a retrotransposon, causes early embryonic lethality. Nat. Genet. 38, 101–6.CrossRefGoogle ScholarPubMed
Reik, W. & Walter, J. (2001). Genomic imprinting: parental influence on the genome. Nat. Rev. Genet. 2, 2132.CrossRefGoogle ScholarPubMed
Santos, F., Hendrich, B., Reik, W.et al. (2002). Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev. Biol. 241, 172–82.CrossRefGoogle ScholarPubMed
Sawai, K., Takahashi, M., Moriyasu, S.et al. (2010). Changes in the DNA methylation status of bovine embryos from the blastocyst to elongated stage derived from somatic cell nuclear transfer. Cell Reprogram 12, 1522.CrossRefGoogle ScholarPubMed
Young, L.E., Fernandes, K., McEvoy, T.G.et al. (2001). Epigenetic change in IGF2R is associated with fetal overgrowth after sheep embryo culture. Nat. Genet. 27, 153–4.CrossRefGoogle ScholarPubMed
Ziyyat, A. & Lefevre, A. (2001). Differential gene expression in pre-implantation embryos from mouse oocytes injected with round spermatids or spermatozoa, Hum. Reprod. 16, 1449–156.CrossRefGoogle ScholarPubMed