Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-21T18:55:38.138Z Has data issue: false hasContentIssue false

Naive cubical type theory

Published online by Cambridge University Press:  15 March 2022

Bruno Bentzen*
Affiliation:
School of Philosophy, Zhejiang University, Hangzhou, China

Abstract

This article proposes a way of doing type theory informally, assuming a cubical style of reasoning. It can thus be viewed as a first step toward a cubical alternative to the program of informalization of type theory carried out in the homotopy type theory book for dependent type theory augmented with axioms for univalence and higher inductive types. We adopt a cartesian cubical type theory proposed by Angiuli, Brunerie, Coquand, Favonia, Harper, and Licata as the implicit foundation, confining our presentation to elementary results such as function extensionality, the derivation of weak connections and path induction, the groupoid structure of types, and the Eckmman–Hilton duality.

Type
Paper
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altenkirch, T. (2019). Naïve type theory. In: Reflections on the Foundations of Mathematics, Springer, 101–136. https://doi.org/10.1007/978-3-030-15655-8_5.CrossRefGoogle Scholar
Angiuli, C. (2019). Computational Semantics of Cartesian Cubical Type Theory. Phd thesis, Carnegie Mellon University. https://www.cs.cmu.edu/cangiuli/thesis/thesis.pdf.Google Scholar
Angiuli, C., Brunerie, G., Coquand, T., Hou (Favonia), K.-B., Harper, R. and Licata, D. (2019). Syntax and models of cartesian cubical type theory. https://github.com/dlicata335/cart-cube. Preprint.Google Scholar
Angiuli, C., Hou (Favonia), K.-B. and Harper, R. (2018). Computational higher type theory iii: Univalent universes and exact equality. https://arxiv.org/abs/1712.01800. Preprint.Google Scholar
Awodey, S. (2018). A cubical model of homotopy type theory. Annals of Pure and Applied Logic 169 (12) 12701294. https://doi.org/10.1016/j.apal.2018.08.002.CrossRefGoogle Scholar
Awodey, S. and Warren, M. A. (2009). Homotopy theoretic models of identity types. Mathematical Proceedings of the Cambridge Philosophical Society 146 (1) 4555. https://doi.org/10.1017/S0305004108001783.CrossRefGoogle Scholar
Bentzen, B. (2020). On different ways of being equal. Erkenntnis. https://doi.org/10.1007/s10670-020-00275-8.CrossRefGoogle Scholar
Bezem, M., Coquand, T. and Huber, S. (2014). A model of type theory in cubical sets. In: Matthes, R. and Schubert, A. (eds.) 19th International Conference on Types for Proofs and Programs (TYPES 2013), Leibniz International Proceedings in Informatics (LIPIcs), vol. 26, Dagstuhl, Germany. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 107–128.Google Scholar
Brunerie, G., Ljungström, A. and Mörtberg, A. (2021). Synthetic cohomology theory in cubical agda. https://staff.math.su.se/anders.mortberg/papers/zcohomology.pdf.Google Scholar
Cavallo, E. and Harper, R. (2018). Computational Higher Type Theory IV: Inductive Types. https://arxiv.org/pdf/1801.01568.pdf. Preprint.Google Scholar
Cohen, C., Coquand, T., Huber, S. and Mörtberg, A. (2018). Cubical type theory: A constructive interpretation of the univalence axiom. In: Uustalu, T. (ed.), 21st International Conference on Types for Proofs and Programs (TYPES 2015), Leibniz International Proceedings in Informatics (LIPIcs), vol. 69, Dagstuhl, Germany. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 5:1–5:34.Google Scholar
Constable, R. L. (2002). Naïve computational type theory. In: Schwichtenberg, H. and Steinbrüggen, R. (eds.), Proof and System-Reliability, Netherlands, Dordrecht, Springer, 213–259. https://doi.org/10.1007/978-94-010-0413-8_7.Google Scholar
Coquand, T., Huber, S. and Mörtberg, A. (2018). On higher inductive types in cubical type theory. In: Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS’18, New York, NY, USA. ACM, 255–264.CrossRefGoogle Scholar
Halmos, P. R. (1974). Naive Set Theory, New York, Springer-Verlag.CrossRefGoogle Scholar
Ladyman, J. and Presnell, S. (2019). Universes and univalence in homotopy type theory. The Review of Symbolic Logic 3 (12) 426455. https://doi.org/10.1017/S1755020316000460.CrossRefGoogle Scholar
Lumsdaine, P. L. (2010). Weak omega-categories from intensional type theory. Logical Methods in Computer Science 6 (3). https://lmcs.episciences.org/1062.CrossRefGoogle Scholar
The RedPRL Development Team. (2018). The redtt Proof Assistant. https://github.com/RedPRL/redtt/.Google Scholar
The Univalent Foundations Program. (2013). Homotopy type theory: Univalent foundations of mathematics. https://homotopytypetheory.org/book/.Google Scholar
Vezzosi, A., Mörtberg, A. and Abel, A. (2019). Cubical agda: a dependently typed programming language with univalence and higher inductive types. Proceedings of the ACM on Programming Languages 3 (ICFP) 1–29. https://dl.acm.org/doi/10.1145/3341691.Google Scholar
Voevodsky, V. (2006). A very short note on the homotopy $\lambda$ -calculus. http://www.math.ias.edu/vladimir/files/2006_09_Hlambda.pdf. Unpublished note.Google Scholar