Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-06-07T04:50:47.805Z Has data issue: false hasContentIssue false

Life stress influences the relationship between sex hormone fluctuation and affective symptoms in peripubertal female adolescents

Published online by Cambridge University Press:  06 March 2023

Elizabeth Andersen*
Affiliation:
Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
Hannah Klusmann
Affiliation:
Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA Division of Clinical Psychological Intervention, Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany
Tory Eisenlohr-Moul
Affiliation:
Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
Kayla Baresich
Affiliation:
Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
Susan Girdler
Affiliation:
Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
*
Corresponding author: Elizabeth Andersen, email: elizabeth_andersen@med.unc.edu

Abstract

Female adolescents have a greatly increased risk of depression starting at puberty, which continues throughout the reproductive lifespan. Sex hormone fluctuation has been highlighted as a key proximal precipitating factor in the development of mood disorders tied to reproductive events; however, hormone-induced affective state change is poorly understood in the pubertal transition. The present study investigated the impact of recent stressful life events on the relationship between sex hormone change and affective symptoms in peripubertal female participants. Thirty-five peripubertal participants (ages 11–14, premenarchal, or within 1 year of menarche) completed an assessment of stressful life events, and provided weekly salivary hormone collections [estrone, testosterone, dehydroepiandrosterone (DHEA)] and mood assessments for 8 weeks. Linear mixed models tested whether stressful life events provided a context in which within-person changes in hormones predicted weekly affective symptoms. Results indicated that exposure to stressful life events proximal to the pubertal transition influenced the directional effects of hormone change on affective symptoms. Specifically, greater affective symptoms were associated with increases in hormones in a high stress context and decreases in hormones in a low stress context. These findings provide support for stress-related hormone sensitivity as a diathesis for precipitating affective symptoms in the presence of pronounced peripubertal hormone flux.

Type
Regular Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Elizabeth Andersen and Hannah Klusmann are shared first authors.

References

Andersen, E., Fiacco, S., Gordon, J., Kozik, R., Baresich, K., Rubinow, D., & Girdler, S. (2022). Methods for characterizing ovarian and adrenal hormone variability and mood relationships in peripubertal females. Psychoneuroendocrinology, 141, 1547. https://doi.org/10.1016/j.psyneuen.2022.105747 CrossRefGoogle ScholarPubMed
Angold, A. (1993). Puberty onset of gender differences in rates of depression: A developmental, epidemiologic and neuroendocrine perspective. Journal of Affective Disorders, 29(2-3), 145158. https://doi.org/10.1016/0165-0327(93)90029-J CrossRefGoogle ScholarPubMed
Angold, A., Costello, E. J., Erkanli, A., & Worthman, C. M. (1999). Pubertal changes in hormone levels and depression in girls. Psychological Medicine, 29(5), 10431053.CrossRefGoogle ScholarPubMed
Apter, D. (1980). Serum steroids and pituitary hormones in female puberty: A partly longitudinal study. Clinical Endocrinology, 12(2), 107120. https://doi.org/10.1111/j.1365-2265.1980.tb02125.x CrossRefGoogle ScholarPubMed
Apter, D., Cacciatore, B., Alfthan, H., & Stenman, U. (1989). Serum luteinizing hormone concentrations increase 100-fold in females from 7 years of age to adulthood, as measured by time-resolved immunofluorometric assay. The Journal of Clinical Endocrinology & Metabolism, 68(1), 5357. https://doi.org/10.1210/jcem-68-1-53 CrossRefGoogle ScholarPubMed
Balzer, B. W. R., Duke, S. A., Hawke, C. I., & Steinbeck, K. S. (2015). The effects of estradiol on mood and behavior in human female adolescents: A systematic review. European Journal of Pediatrics, 174(3), 289298. https://doi.org/10.1007/s00431-014-2475-3 CrossRefGoogle ScholarPubMed
Bini, V., Celi, F., Berioli, M. G., Bacosi, M. L., Stella, P., Giglio, P., Tosti, L., & Falorni, A. (2000). Body mass index in children and adolescents according to age and pubertal stage. European Journal of Clinical Nutrition, 54(3), 214218, https://doi.org/10.1038/sj.ejcn.1600922,CrossRefGoogle ScholarPubMed
Biro, F. M., Pinney, S. M., Huang, B., Baker, E. R., Walt Chandler, D., & Dorn, L. D. (2014). Hormone changes in peripubertal girls. The Journal of Clinical Endocrinology & Metabolism, 99(10), 38293835. https://doi.org/10.1210/jc.2013-4528 CrossRefGoogle ScholarPubMed
Blakemore, S. J. (2008). The social brain in adolescence. Nature Reviews Neuroscience, 9(4), 267277. https://doi.org/10.1038/nrn2353 CrossRefGoogle ScholarPubMed
Bloch, M., Schmidt, P. J., Danaceau, M. A., Murphy, J., Nieman, L. K., & Rubinow, D. R. (2000). Effects of gonadal steroids in women with a history of postpartum depression. The American Journal of Psychiatry, 157(6), 924930.CrossRefGoogle ScholarPubMed
Bramen, J. E., Hranilovich, J. A., Dahl, R. E., Chen, J., Rosso, C., Forbes, E. E., Dinov, I. D., Worthman, C. M., & Sowell, E. R. (2012). Sex matters during adolescence: Testosterone-related cortical thickness maturation differs between boys and girls. PLoS ONE, 7(3), e33850. https://doi.org/10.1371/journal.pone.0033850 CrossRefGoogle ScholarPubMed
Bromberger, J. T., Kravitz, H. M., Chang, Y. F., Cyranowski, J. M., Brown, C., & Matthews, K. A. (2011). Major depression during and after the menopausal transition: Study of Women’s Health Across the Nation (SWAN). Psychological Medicine, 41(9), 18791888. https://doi.org/10.1017/S003329171100016X.CrossRefGoogle ScholarPubMed
Burleson Daviss, W., Birmaher, B., Melhem, N. A., Axelson, D. A., Michaels, S. M., & Brent, D. A. (2006). Criterion validity of the Mood and Feelings Questionnaire for depressive episodes in clinic and non-clinic subjects: Criterion validity of Mood and Feelings Questionnaire. Journal of Child Psychology and Psychiatry, 47(9), 927934. https://doi.org/10.1111/j.1469-7610.2006.01646.x CrossRefGoogle Scholar
Carlson, L. J., & Shaw, N. D. (2019). Development of ovulatory menstrual cycles in adolescent girls. Journal of Pediatric and Adolescent Gynecology, 32(3), 249253. https://doi.org/10.1016/j.jpag.2019.02.119 CrossRefGoogle ScholarPubMed
Carskadon, M. A., & Acebo, C. (1993). A self-administered rating scale for pubertal development. Journal of Adolescent Health, 14(3), 190195. https://doi.org/10.1016/1054-139X(93)90004-9 CrossRefGoogle ScholarPubMed
Coddington, R. D. (1972). The significance of life events as etiologic factors in the diseases of children. II. A study of a normal population. Journal of Psychosomatic Research, 16(3), 205213.Google ScholarPubMed
Cohen, S., Kamarck, T., & Mermelstein, R. (1983). A global measure of perceived stress. Journal of Health and Social Behavior, 24(4), 385396. https://doi.org/10.2307/2136404 CrossRefGoogle ScholarPubMed
Colich, N. L., & McLaughlin, K. A. (2022). Accelerated pubertal development as a mechanism linking trauma exposure with depression and anxiety in adolescence. Current Opinion in Psychology, 46, 101338. https://doi.org/10.1016/j.copsyc.2022.101338 CrossRefGoogle ScholarPubMed
Copeland, W. E., Worthman, C., Shanahan, L., Costello, E. J., & Angold, A. (2019). Early pubertal timing and testosterone associated with higher levels of adolescent depression in girls. Journal of the American Academy of Child & Adolescent Psychiatry, 58(12), 11971206. https://doi.org/10.1016/j.jaac.2019.02.007 CrossRefGoogle ScholarPubMed
Costello, E. J., & Angold, A. (1988). Scales to assess child and adolescent depression: Checklists, screens, and nets. Journal of the American Academy of Child & Adolescent Psychiatry, 27(6), 726737. https://doi.org/10.1097/00004583-198811000-00011 CrossRefGoogle ScholarPubMed
De Carvalho Tofoli, S. M., Von Werne Baes, C., Martins, C. M. S., & Juruena, M. (2011). Early life stress, HPA axis, and depression. Psychology & Neuroscience, 4(2), 229234. https://doi.org/10.3922/j.psns.2011.2.008 CrossRefGoogle Scholar
Dutheil, F., de Saint Vincent, S., Pereira, B., Schmidt, J., Moustafa, F., Charkhabi, M., Bouillon-Minois, J. B., & Clinchamps, M. (2021). DHEA as a biomarker of stress: A systematic review and meta-analysis. Frontiers in Psychiatry, 12, 688367. https://doi.org/10.3389/fpsyt.2021.688367 CrossRefGoogle Scholar
Eisenlohr-Moul, T. A., DeWall, C. N., Girdler, S. S., & Segerstrom, S. C. (2015). Ovarian hormones and borderline personality disorder features: Preliminary evidence for interactive effects of estradiol and progesterone. Biological Psychology, 109, 3752. https://doi.org/10.1016/j.biopsycho.2015.03.016 CrossRefGoogle ScholarPubMed
Eisenlohr-Moul, T. A., Rubinow, D. R., Schiller, C. E., Johnson, J. L., Leserman, J., & Girdler, S. S. (2016). Histories of abuse predict stronger within-person covariation of ovarian steroids and mood symptoms in women with menstrually related mood disorder. Psychoneuroendocrinology, 67, 142152. https://doi.org/10.1016/j.psyneuen.2016.01.026 CrossRefGoogle ScholarPubMed
Ezzati, A., Jiang, J., Katz, M. J., Sliwinski, M. J., Zimmerman, M. E., & Lipton, R. B. (2014). Validation of the Perceived Stress Scale in a community sample of older adults. International Journal of Geriatric Psychiatry, 29(6), 645652. https://doi.org/10.1002/gps.4049 CrossRefGoogle Scholar
Flannery, J. E., Gabard-Durnam, L. J., Shapiro, M., Goff, B., Caldera, C., Louie, J., Gee, D. G., Telzer, E. H., Humphreys, K. L., Lumian, D. S., & Tottenham, N. (2017). Diurnal cortisol after early institutional care—Age matters. Developmental Cognitive Neuroscience, 25, 160166. https://doi.org/10.1016/j.dcn.2017.03.006 CrossRefGoogle ScholarPubMed
Flinn, M. V., Nepomnaschy, P. A., Muehlenbein, M. P., & Ponzi, D. (2011). Evolutionary functions of early social modulation of hypothalamic-pituitary-adrenal axis development in humans. Neuroscience & Biobehavioral Reviews, 35(7), 16111629. https://doi.org/10.1016/j.neubiorev.2011.01.005 CrossRefGoogle ScholarPubMed
Forbes, D., Lockwood, E., Phelps, A., Wade, D., Creamer, M., Bryant, R. A., McFarlane, A., Silove, D., Rees, S., Chapman, C., Slade, T., Mills, K., Teesson, M., & O†Donnell, M. (2013). Trauma at the hands of another: Distinguishing PTSD patterns following intimate and nonintimate interpersonal and noninterpersonal trauma in a nationally representative sample. The Journal of Clinical Psychiatry, 74(2), 21205. https://doi.org/10.4088/JCP.13m08374 Google Scholar
Gao, W., Stalder, T., & Kirschbaum, C. (2015). Quantitative analysis of estradiol and six other steroid hormones in human saliva using a high throughput liquid chromatography-tandem mass spectrometry assay. Talanta, 143, 353358. https://doi.org/10.1016/j.talanta.2015.05.004 CrossRefGoogle ScholarPubMed
Ge, X., Conger, R. D., & Elder, G. H. (2001). Pubertal transition, stressful life events, and the emergence of gender differences in adolescent depressive symptoms. Developmental Psychology, 37(3), 404417. https://doi.org/10.1037/0012-1649.37.3.404 CrossRefGoogle ScholarPubMed
Ge, X., Lorenz, F. O., Conger, R. D., Elder, G. H., & Simons, R. L. (1994). Trajectories of stressful life events and depressive symptoms during adolescence. Developmental Psychology, 30(4), 467483, https://doi-org.libproxy.lib.unc.edu/10.1037/0012-1649.30.4.467 CrossRefGoogle Scholar
Gordon, J. L., Girdler, S. S., Meltzer-Brody, S. E., Stika, C. S., Thurston, R. C., Clark, C. T., Prairie, B. A., Moses-Kolko, E., Joffe, H., & Wisner, K. L. (2015). Ovarian hormone fluctuation, neurosteroids, and HPA axis dysregulation in perimenopausal depression: A novel heuristic model. American Journal of Psychiatry, 172(3), 227236. https://doi.org/10.1176/appi.ajp.2014.14070918 CrossRefGoogle ScholarPubMed
Gordon, J. L., Peltier, A., Grummisch, J. A., & Sykes Tottenham, L. (2019). Estradiol fluctuation, sensitivity to stress, and depressive symptoms in the menopause transition: A pilot study. Frontiers in Psychology, 10, 1319. https://doi.org/10.3389/fpsyg.2019.01319 CrossRefGoogle ScholarPubMed
Gordon, J. L., Rubinow, D. R., Eisenlohr-Moul, T. A., Leserman, J., & Girdler, S. S. (2016). Estradiol variability, stressful life events, and the emergence of depressive symptomatology during the menopausal transition. Menopause, 23(3), 257266. https://doi.org/10.1097/GME.0000000000000528 CrossRefGoogle ScholarPubMed
Gordon, J. L., Sander, B., Eisenlohr-Moul, T. A., & Sykes Tottenham, L. (2020). Mood sensitivity to estradiol predicts depressive symptoms in the menopause transition. Psychological Medicine, 51(10), 17331741. https://doi.org/10.1017/S0033291720000483 CrossRefGoogle ScholarPubMed
Gunn, H. M., Tsai, M. C., McRae, A., & Steinbeck, K. S. (2018). Menstrual patterns in the first gynecological year: A systematic review. Journal of Pediatric and Adolescent Gynecology, 31(6), 557565.e6. https://doi.org/10.1016/j.jpag.2018.07.009 CrossRefGoogle ScholarPubMed
Hamlat, E. J., Stange, J. P., Abramson, L. Y., & Alloy, L. B. (2014). Early pubertal timing as a vulnerability to depression symptoms: Differential effects of race and sex. Journal of Abnormal Child Psychology, 42(4), 527538. https://doi.org/10.1007/s10802-013-9798-9 CrossRefGoogle ScholarPubMed
Hammen, C. (2005). Stress and depression. Annual Review of Clinical Psychology, 1(1), 293319. https://doi.org/10.1146/annurev.clinpsy.1.102803.143938 CrossRefGoogle ScholarPubMed
Hankin, B. L., Mermelstein, R., & Roesch, L. (2007). Sex differences in adolescent depression: Stress exposure and reactivity models. Child Development, 78(1), 279295. https://doi.org/10.1111/j.1467-8624.2007.00997.x CrossRefGoogle ScholarPubMed
Hewitt, P. L., Flett, G. L., & Mosher, S. W. (1992). The Perceived Stress Scale: Factor structure and relation to depression symptoms in a psychiatric sample. Journal of Psychopathology and Behavioral Assessment, 14(3), 247257. https://doi.org/10.1007/BF00962631 CrossRefGoogle Scholar
Ho, T. C., & King, L. S. (2021). Mechanisms of neuroplasticity linking early adversity to depression: Developmental considerations. Translational Psychiatry, 11(1), 517. https://doi.org/10.1038/s41398-021-01639-6 CrossRefGoogle ScholarPubMed
Hucklebridge, F., Hussain, T., Evans, P., & Clow, A. (2005). The diurnal patterns of the adrenal steroids cortisol and dehydroepiandrosterone (DHEA) in relation to awakening. Psychoneuroendocrinology, 30(1), 5157. https://doi.org/10.1016/j.psyneuen.2004.04.007 CrossRefGoogle ScholarPubMed
James-Todd, T., Tehranifar, P., Rich-Edwards, J., Titievsky, L., & Terry, M. B. (2010). The impact of socioeconomic status across early life on age at menarche among a racially diverse population of girls. Annals of Epidemiology, 20(11), 836842. https://doi.org/10.1016/j.annepidem.2010.08.006 CrossRefGoogle ScholarPubMed
Janfaza, M., Sherman, T. I., Larmore, K. A., Brown-Dawson, J., & Klein, K. O. (2006). Estradiol levels and secretory dynamics in normal girls and boys as determined by an ultrasensitive bioassay: A 10 year experience. Journal of Pediatric Endocrinology and Metabolism, 19(7), 901910.CrossRefGoogle ScholarPubMed
Kamin, H. S., & Kertes, D. A. (2017). Cortisol and DHEA in development and psychopathology. Hormones and Behavior, 89, 6985. https://doi.org/10.1016/j.yhbeh.2016.11.018 CrossRefGoogle ScholarPubMed
Karishma, K. K., & Herbert, J. (2002). Dehydroepiandrosterone (DHEA) stimulates neurogenesis in the hippocampus of the rat, promotes survival of newly formed neurons and prevents corticosterone-induced suppression: DHEA in hippocampus. European Journal of Neuroscience, 16(3), 445453. https://doi.org/10.1046/j.1460-9568.2002.02099.x CrossRefGoogle Scholar
King, L. S., Colich, N. L., LeMoult, J., Humphreys, K. L., Ordaz, S. J., Price, A. N., & Gotlib, I. H. (2017). The impact of the severity of early life stress on diurnal cortisol: The role of puberty. Psychoneuroendocrinology, 77, 6874. https://doi.org/10.1016/j.psyneuen.2016.11.024 CrossRefGoogle ScholarPubMed
Kupferberg, A., Bicks, L., & Hasler, G. (2016). Social functioning in major depressive disorder. Neuroscience & Biobehavioral Reviews, 69, 313332. https://doi.org/10.1016/j.neubiorev.2016.07.002 CrossRefGoogle ScholarPubMed
Kuzawa, C. W., Georgiev, A. V., McDade, T. W., Bechayda, S. A., & Gettler, L. T. (2016). Is there a testosterone awakening response in humans? Adaptive Human Behavior and Physiology, 2(2), 166183. https://doi.org/10.1007/s40750-015-0038-0 CrossRefGoogle Scholar
LeMoult, J., Humphreys, K. L., Tracy, A., Hoffmeister, J. A., Ip, E., & Gotlib, I. H. (2020). Meta-analysis: Exposure to early life stress and risk for depression in childhood and adolescence. Journal of the American Academy of Child and Adolescent Psychiatry, 59(7), 842855. https://doi.org/10.1016/j.jaac.2019.10.011 CrossRefGoogle ScholarPubMed
LeMoult, J., Ordaz, S. J., Kircanski, K., Singh, M. K., & Gotlib, I. H. (2015). Predicting first onset of depression in young girls: Interaction of diurnal cortisol and negative life events. Journal of Abnormal Psychology, 124(4), 850859. https://doi.org/10.1037/abn0000087 CrossRefGoogle ScholarPubMed
López-Martínez, A. E., Serrano-Ibáñez, E. R., Ruiz-Párraga, G. T., Gómez-Pérez, L., Ramírez-Maestre, C., & Esteve, R. (2018). Physical health consequences of interpersonal trauma: A systematic review of the role of psychological variables. Trauma, Violence, & Abuse, 19(3), 305322. https://doi.org/10.1177/1524838016659488 CrossRefGoogle ScholarPubMed
Lozza-Fiacco, S., Gordon, J. L., Andersen, E. H., Kozik, R. G., Neely, O., Schiller, C., Munoz, M., Rubinow, D. R., & Girdler, S. S. (2022). Baseline anxiety-sensitivity to estradiol fluctuations predicts anxiety symptom response to transdermal estradiol treatment in perimenopausal women – A randomized clinical trial. Psychoneuroendocrinology, 143, 105851. https://doi.org/10.1016/j.psyneuen.2022.105851 CrossRefGoogle ScholarPubMed
Lupien, S. J., McEwen, B. S., Gunnar, M. R., & Heim, C. (2009). Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nature Reviews Neuroscience, 10, 434445. https://doi.org/10.1038/nrn2639 CrossRefGoogle ScholarPubMed
McLaughlin, K. A., Sheridan, M. A., Humphreys, K. L., Belsky, J., & Ellis, B. J. (2021). The value of dimensional models of early experience: Thinking clearly about concepts and categories. Perspectives on Psychological Science, 16(6), 14631472. https://doi.org/10.1177/1745691621992346 CrossRefGoogle ScholarPubMed
McLeod, J. D., & Kessler, R. C. (1990). Socioeconomic status differences in vulnerability to undesirable life events. Journal of Health and Social Behavior, 31(2), 162. https://doi.org/10.2307/2137170 CrossRefGoogle ScholarPubMed
McNeish, D., & Matta, T. (2018). Differentiating between mixed-effects and latent-curve approaches to growth modeling. Behavior Research Methods, 50(4), 13981414. https://doi.org/10.3758/s13428-017-0976-5 CrossRefGoogle ScholarPubMed
Meadows, S. O., Brown, J. S., & Elder, G. H. (2006). Depressive symptoms, stress, and support: Gendered trajectories from adolescence to young adulthood. Journal of Youth and Adolescence, 35(1), 8999. https://doi.org/10.1007/s10964-005-9021-6 CrossRefGoogle Scholar
Mendle, J., Beltz, A. M., Carter, R., & Dorn, L. D. (2019). Understanding puberty and its measurement: Ideas for research in a new generation. Journal of Research on Adolescence, 29(1), 8295. https://doi.org/10.1111/jora.12371 CrossRefGoogle ScholarPubMed
Monroe, S. M., & Reid, M. W. (2008). Gene-environment interactions in depression research: Genetic polymorphisms and life-stress polyprocedures. Psychological Science, 19(10), 947956. https://doi.org/10.1111/j.1467-9280.2008.02181.x CrossRefGoogle ScholarPubMed
Namavar Jahromi, B., Pakmehr, S., & Hagh-Shenas, H. (2011). Work stress, premenstrual syndrome and dysphoric disorder: Are there any associations? Iranian Red Crescent Medical Journal, 13(3), 199202.Google ScholarPubMed
Nelson, C. A., & Gabard-Durnam, L. J. (2020). Early adversity and critical periods: Neurodevelopmental consequences of violating the expectable environment. Trends in Neurosciences, 43(3), 133143. https://doi.org/10.1016/j.tins.2020.01.002 CrossRefGoogle ScholarPubMed
Ottowitz, W. E., Derro, D., Dougherty, D. D., Lindquist, M. A., Fischman, A. J., & Hall, J. E. (2008). Analysis of amygdalar-cortical network covariance during pre- versus post-menopausal estrogen levels: Potential relevance to resting state networks, mood, and cognition. Neuro Endocrinology Letters, 29(4), 467474.Google ScholarPubMed
Owens, S. A., Helms, S. W., Rudolph, K. D., Hastings, P. D., Nock, M. K., & Prinstein, M. J. (2018). Interpersonal stress severity longitudinally predicts adolescent girls’ depressive symptoms: The moderating role of subjective and HPA axis stress responses. Journal of Abnormal Child Psychology, 47(5), 895905. https://doi.org/10.1007/s10802-018-0483-x CrossRefGoogle Scholar
Oyola, M. G., & Handa, R. J. (2017). Hypothalamic-pituitary–adrenal and hypothalamic-pituitary–gonadal axes: Sex differences in regulation of stress responsivity. Stress, 20(5), 476494. https://doi.org/10.1080/10253890.2017.1369523 CrossRefGoogle ScholarPubMed
Pandya, M., Altinay, M., Malone, D. A., & Anand, A. (2012). Where in the brain is depression? Current Psychiatry Reports, 14(6), 634642. https://doi.org/10.1007/s11920-012-0322-7 CrossRefGoogle ScholarPubMed
Patton, G. C., Olsson, C., Bond, L., Toumbourou, J. W., Carlin, J. B., Hemphill, S. A., & Catalano, R. F. (2008). Predicting female depression across puberty: A two-nation longitudinal study. Journal of the American Academy of Child & Adolescent Psychiatry, 47(12), 14241432. https://doi.org/10.1097/CHI.0b013e3181886ebe CrossRefGoogle ScholarPubMed
Paykel, E. S. (2003). Life events and affective disorders. Acta Psychiatrica Scandinavica, 108, 6166. https://doi.org/10.1034/j.1600-0447.108.s418.13.x CrossRefGoogle Scholar
Petersen, A. C., Crockett, L., Richards, M., & Boxer, A. (1988). A self-report measure of pubertal status: Reliability, validity, and initial norms. Journal of Youth and Adolescence, 17(2), 117133.CrossRefGoogle ScholarPubMed
Roberts, R. E., Andrews, J. A., Lewinsohn, P. M., & Hops, H. (1990). Assessment of depression in adolescents using the Center for Epidemiologic Studies Depression Scale. Psychological Assessment: A Journal of Consulting and Clinical Psychology, 2(2), 122128. https://doi.org/10.1037/1040-3590.2.2.122 CrossRefGoogle Scholar
SAMHSA (2020). 2020 NSDUH Detailed Tables | CBHSQ Data. Retrieved November 1, 2021, from https://www.samhsa.gov/data/report/2020-nsduh-detailed-tables Google Scholar
Sander, B., Muftah, A., Sykes Tottenham, L., Grummisch, J. A., & Gordon, J. L. (2021). Testosterone and depressive symptoms during the late menopause transition. Biology of Sex Differences, 12(1), 44. https://doi.org/10.1186/s13293-021-00388-x CrossRefGoogle ScholarPubMed
Schiller, C. E., Johnson, S. L., Abate, A. C., Schmidt, P. J., & Rubinow, D. R. (2016). Reproductive steroid regulation of mood and behavior. In Comprehensive physiology (pp. 11351160). John Wiley & Sons, Inc. https://doi.org/10.1002/cphy.c150014 CrossRefGoogle Scholar
Schiller, C. E., Walsh, E., Eisenlohr-Moul, T. A., Prim, J., Dichter, G. S., Schiff, L., Bizzell, J., Slightom, S. L., Richardson, E. C., Belger, A., Schmidt, P., & Rubinow, D. R. (2022). Effects of gonadal steroids on reward circuitry function and anhedonia in women with a history of postpartum depression. Journal of Affective Disorders, 314, 176184. https://doi.org/10.1016/j.jad.2022.06.078 CrossRefGoogle ScholarPubMed
Schmalenberger, K. M., Tauseef, H. A., Barone, J. C., Owens, S. A., Lieberman, L., Jarczok, M. N., Girdler, S. S., Kiesner, J., Ditzen, B., & Eisenlohr-Moul, T. A. (2021). How to study the menstrual cycle: Practical tools and recommendations. Psychoneuroendocrinology, 123, 104895. https://doi.org/10.1016/j.psyneuen.2020.104895 CrossRefGoogle Scholar
Schmidt, P. J., Berlin, K. L., Danaceau, M. A., Neeren, A., Haq, N. A., Roca, C. A., & Rubinow, D. R. (2004). The effects of pharmacologically induced hypogonadism on mood in healthy men. Archives of General Psychiatry, 61(10), 9971004. https://doi.org/10.1001/archpsyc.61.10.997 CrossRefGoogle ScholarPubMed
Schmidt, P. J., Daly, R. C., Bloch, M., Smith, M. J., Danaceau, M. A., Simpson St. Clair, L., Murphy, J. H., Haq, N., & Rubinow, D. R. (2005). Dehydroepiandrosterone monotherapy in midlife-onset major and minor depression. Archives of General Psychiatry, 62(2), 154162. https://doi.org/10.1001/archpsyc.62.2.154 CrossRefGoogle ScholarPubMed
Schmidt, P. J., Dor, R. B., Martinez, P. E., Guerrieri, G. M., Harsh, V. L., Thompson, K., Koziol, D. E., Nieman, L. K., & Rubinow, D. R. (2015). Effects of estradiol withdrawal on mood in women with past perimenopausal depression: A randomized clinical trial. JAMA Psychiatry, 72(7), 714726.CrossRefGoogle ScholarPubMed
Schmidt, P. J., Martinez, P. E., Nieman, L. K., Koziol, D. E., Thompson, K. D., Schenkel, L., Wakim, P. G., & Rubinow, D. R. (2017). Premenstrual dysphoric disorder symptoms following ovarian suppression: Triggered by change in ovarian steroid levels but not continuous stable levels. The American Journal of Psychiatry, 174(10), 980989. https://doi.org/10.1176/appi.ajp.2017.16101113 CrossRefGoogle Scholar
Schmidt, P. J., Nieman, L. K., Danaceau, M. A., Adams, L. F., & Rubinow, D. R. (1998). Differential behavioral effects of gonadal steroids in women with and in those without premenstrual syndrome. New England Journal of Medicine, 338(4), 209216.CrossRefGoogle ScholarPubMed
Schmitz, K. E., Hovell, M. F., Nichols, J. F., Irvin, V. L., Keating, K., Simon, G. M., Gehrman, C., & Jones, K. L. (2004). A validation study of early adolescents’ pubertal self-assessments. The Journal of Early Adolescence, 24(4), 357384. https://doi.org/10.1177/0272431604268531 CrossRefGoogle Scholar
Selya, A. S., Rose, J. S., Dierker, L. C., Hedeker, D., & Mermelstein, R. J. (2012). A practical guide to calculating cohen’s f2, a measure of local effect size, from PROC MIXED. Frontiers in Psychology, 3, 111. https://doi.org/10.3389/fpsyg.2012.00111 CrossRefGoogle ScholarPubMed
Shafer, A. B. (2006). Meta-analysis of the factor structures of four depression questionnaires: Beck, CES-D, Hamilton, and Zung. Journal of Clinical Psychology, 62(1), 123146. https://doi.org/10.1002/jclp.20213 CrossRefGoogle ScholarPubMed
Sharma, S., Deuja, S., & Saha, C. G. (2016). Menstrual pattern among adolescent girls of Pokhara Valley: A cross sectional study. BMC Women’s Health, 16(1), 74. https://doi.org/10.1186/s12905-016-0354-y CrossRefGoogle ScholarPubMed
Shih, J. H., Eberhart, N. K., Hammen, C. L., & Brennan, P. A. (2006). Differential exposure and reactivity to interpersonal stress predict sex differences in adolescent depression. Journal of Clinical Child & Adolescent Psychology, 35(1), 103115. https://doi.org/10.1207/s15374424jccp3501_9 CrossRefGoogle ScholarPubMed
Shirtcliff, E., Zahn-Waxler, C., Klimes-Dougan, B., & Slattery, M. (2007). Salivary dehydroepiandrosterone responsiveness to social challenge in adolescents with internalizing problems. Journal of Child Psychology and Psychiatry, 48(6), 580591.CrossRefGoogle ScholarPubMed
Sisk, L. M., & Gee, D. G. (2022). Stress and adolescence: Vulnerability and opportunity during a sensitive window of development. Current Opinion in Psychology, 44, 286292. https://doi.org/10.1016/j.copsyc.2021.10.005 CrossRefGoogle ScholarPubMed
Slavich, G. M., & Irwin, M. R. (2014). From stress to inflammation and major depressive disorder: A social signal transduction theory of depression. Psychological Bulletin, 140(3), 774815. https://doi.org/10.1037/a0035302 CrossRefGoogle ScholarPubMed
Slavich, G. M., O’donovan, A., Epel, E. S., & Kemeny, M. E. (2010). Black sheep get the blues: A psychobiological model of social rejection and depression. Neuroscience & Biobehavioral Reviews, 35(1), 3945.CrossRefGoogle Scholar
Spear, L. P. (2009). Heightened stress responsivity and emotional reactivity during pubertal maturation: Implications for psychopathology. Development and Psychopathology, 21(1), 8797. https://doi.org/10.1017/S0954579409000066 CrossRefGoogle ScholarPubMed
Sripada, R. K., Marx, C. E., King, A. P., Rajaram, N., Garfinkel, S. N., Abelson, J. L., & Liberzon, I. (2013). DHEA enhances emotion regulation neurocircuits and modulates memory for emotional stimuli. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 38(9), 17981807. https://doi.org/10.1038/npp.2013.79 CrossRefGoogle ScholarPubMed
Steudte-Schmiedgen, S., Kirschbaum, C., Alexander, N., & Stalder, T. (2016). An integrative model linking traumatization, cortisol dysregulation and posttraumatic stress disorder: Insight from recent hair cortisol findings. Neuroscience & Biobehavioral Reviews, 69, 124135. https://doi.org/10.1016/j.neubiorev.2016.07.015 CrossRefGoogle ScholarPubMed
Sun, B. Z., Kangarloo, T., Adams, J. M., Sluss, P. M., Welt, C. K., Chandler, D. W., Zava, D. T., McGrath, J. A., Umbach, D. M., Hall, J. E., & Shaw, N. D. (2019). Healthy post-menarchal adolescent girls demonstrate multi-level reproductive axis immaturity. The Journal of Clinical Endocrinology & Metabolism, 104(2), 613623. https://doi.org/10.1210/jc.2018-00595 CrossRefGoogle ScholarPubMed
Taylor, S. J., Whincup, P. H., Hindmarsh, P. C., Lampe, F., Odoki, K., & Cook, D. G. (2001). Performance of a new pubertal self-assessment questionnaire: A preliminary study. Paediatric and Perinatal Epidemiology, 15(1), 8894.CrossRefGoogle ScholarPubMed
Turner, R. J., Wheaton, B., & Lloyd, D. A. (1995). The epidemiology of social stress. American Sociological Review, 60(1), 104. https://doi.org/10.2307/2096348 CrossRefGoogle Scholar
Walker, E. F., Sabuwalla, Z., & Huot, R. (2004). Pubertal neuromaturation, stress sensitivity, and psychopathology. Development and Psychopathology, 16(4), 807824. https://doi.org/10.1017/S0954579404040027 CrossRefGoogle ScholarPubMed
Yasuda, M., Honma, S., Furuya, K., Yoshii, T., Kamiyama, Y., Ide, H., Muto, S., & Horie, S. (2008). Diagnostic significance of salivary testosterone measurement revisited: Using liquid chromatography/mass spectrometry and enzyme-linked immunosorbent assay. Journal of Men’s Health, 5(1), 5663. https://doi.org/10.1016/j.jomh.2007.12.004 CrossRefGoogle Scholar
Young, E. S., Doom, J. R., Farrell, A. K., Carlson, E. A., Englund, M. M., Miller, G. E., Gunnar, M. R., Roisman, G. I., & Simpson, J. A. (2021). Life stress and cortisol reactivity: An exploratory analysis of the effects of stress exposure across life on HPA-axis functioning. Development and Psychopathology, 33(1), 301312. https://doi.org/10.1017/S0954579419001779 CrossRefGoogle ScholarPubMed
Zarrouf, F. A., Artz, S., Griffith, J., Sirbu, C., & Kommor, M. (2009). Testosterone and depression: Systematic review and meta-analysis. Journal of Psychiatric Practice, 15(4), 289305. https://doi.org/10.1097/01.pra.0000358315.88931.fc CrossRefGoogle ScholarPubMed