Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-29T22:40:24.541Z Has data issue: false hasContentIssue false

An improved wide-lane ambiguity resolution method for kinematic smartphone positioning

Published online by Cambridge University Press:  13 May 2024

Yan Zhang
Affiliation:
Department of Geomatics Engineering, University of Calgary, Calgary, Canada
Yang Jiang*
Affiliation:
Department of Geomatics Engineering, University of Calgary, Calgary, Canada
Yuting Gao
Affiliation:
College of Geomatics, Xi'an University of Science and Technology, Xi'an, China
Shuai Guo
Affiliation:
Department of Geomatics Engineering, University of Calgary, Calgary, Canada
Yang Gao
Affiliation:
Department of Geomatics Engineering, University of Calgary, Calgary, Canada
*
*Corresponding author: Yang Jiang; Email: yang.jiang1@ucalgary.ca

Abstract

The release of GNSS raw data on Android smartphones provides the potential for high-precision smartphone positioning using multi-constellation and multi-frequency signals. However, severe multipath and low observation quality in kinematic environments make double-differenced uncombined ambiguities difficult to resolve reliably. To address this, the paper proposes an improved wide-lane (WL) integer ambiguity resolution (IAR) method that combines integer rounding and the Least-Square AMBiguity Decorrelation Adjustment (LAMBDA) methods. The proposed method achieved fix rates of 57% to 70% in challenging environments, with an average improvement of 7 · 7% in horizontal positioning accuracy compared to the float solution. The traditional partial integer rounding method only improved accuracy by 1 · 1%.

Type
Research Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of The Royal Institute of Navigation

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brommer, C., Jung, R., Steinbrener, J. and Weiss, S. (2020). MaRS: A modular and robust sensor-fusion framework. IEEE Robotics and Automation Letters, 6(2), 359366. doi:10.1109/LRA.2020.3043195CrossRefGoogle Scholar
Castel, B., Cortés, I., Merwe, J., Dietmayer, K., Rugamer, A. and Felber, W. (2021). Evaluation of Decimeter Positioning Post-Processing Algorithms Using GNSS Raw Measurements. Proc. ION GNSS+ 2021, Institute of Navigation, St. Louis, Missouri, September 20–24, pp. 3037–3048. doi:10.33012/2021.18051CrossRefGoogle Scholar
Dabove, P. and Di Pietra, V. (2019a). Single-baseline RTK positioning using dual-frequency GNSS receivers inside smartphones. Sensors, 19(19), 4302. doi:10.3390/s19194302CrossRefGoogle ScholarPubMed
Dabove, P. and Di Pietra, V. (2019b). Towards high accuracy GNSS real-time positioning with smartphones. Advances in Space Research, 63(1), 94102. doi:10.1016/j.asr.2018.08.025CrossRefGoogle Scholar
Dai, S. (2022). 2nd Place Winner of the Smartphone Decimeter Challenge: Improving Smartphone GNSS Positioning Using Gradient Descent Method. Proc. ION GNSS+ 2022, Denver, Colorado, USA, September 19–23, pp. 2321–2328. doi:10.33012/2022.18380CrossRefGoogle Scholar
Dong, D. N. and Bock, Y. (1989). Global positioning system network analysis with phase ambiguity resolution applied to crustal deformation studies in California. Journal of Geophysical Research: Solid Earth, 94(B4), 39493966. doi:10.1029/JB094iB04p03949CrossRefGoogle Scholar
Dong, X., Zhang, L., Lv, R. and Cai, Y. (2022). An Adaptive Nonlinear Filter for Uncertain Measurement Noise. In Advances in Guidance, Navigation and Control: Proceedings of 2020 International Conference on Guidance, Navigation and Control, ICGNC 2020, Tianjin, China, October 23–25, pp. 4089–4100. Springer Singapore. doi:10.1007/978-981-15-8155-7_341CrossRefGoogle Scholar
Engelbrecht, J., Booysen, M. J., van Rooyen, G. J. and Bruwer, F. J. (2015). Survey of smartphone-based sensing in vehicles for intelligent transportation system applications. IET Intelligent Transport Systems, 9(10), 924935. doi:10.1049/iet-its.2014.0248CrossRefGoogle Scholar
Fortunato, M., Tagliaferro, G., Fernández-Rodríguez, E. and Critchley-Marrows, J. (2021). The Whole Works: A GNSS/IMU Tightly Coupled Filter for Android Raw GNSS Measurements with Local Ground Augmentation Strategies. Proc. ION GNSS+ 2021, Institute of Navigation, St. Louis, Missouri, USA, September 20–24, pp. 3103–3126. doi:10.33012/2021.18006CrossRefGoogle Scholar
Fu, G. M., Khider, M. and Van Diggelen, F. (2020). Android Raw GNSS Measurement Datasets for Precise Positioning. Proc. ION GNSS+ 2020, Institute of Navigation, September 21–25, pp. 1925–1937. doi:10.33012/2020.17628CrossRefGoogle Scholar
Fu, G. M., Khider, M. and Van Diggelen, F. (2022). Summary and Legacy of the Smartphone Decimeter Challenge (SDC) 2022. Proc. ION GNSS+ 2022, Institute of Navigation, Denver, Colorado, USA, September 19–23, pp. 2301–2320. doi:10.33012/2022.18379CrossRefGoogle Scholar
Gao, R., Xu, L., Zhang, B. and Liu, T. (2021). Raw GNSS observations from android smartphones: Characteristics and short-baseline RTK positioning performance. Measurement Science and Technology, 32(8), 084012. doi:10.1088/1361-6501/abe56eCrossRefGoogle Scholar
Gao, Y., Zangenehnej, F., Jiang, Y. and Zhang, Y. (2023). Fast High Accuracy Kinematic Smartphone Positioning for Location-Based Services. Abstracts of the ICA, 6, 67. doi:10.5194/ica-abs-6-67-2023CrossRefGoogle Scholar
Ge, M., Gendt, G., Rothacher M, A., Shi, C. and Liu, J. (2008). Resolution of GPS carrier-phase ambiguities in precise point positioning (PPP) with daily observations. Journal of Geodesy, 82(7), 389. doi:10.1007/s00190-007-0187-4CrossRefGoogle Scholar
Geng, J. and Bock, Y. (2013). Triple-frequency GPS precise point positioning with rapid ambiguity resolution. Journal of Geodesy, 87(5), 449460. doi:10.1007/s00190-013-0619-2CrossRefGoogle Scholar
Geng, J. and Li, G. (2019). On the feasibility of resolving android GNSS carrier-phase ambiguities. J Geod, 93, 26212635. doi:10.1007/s00190-019-01323-0CrossRefGoogle Scholar
Geng, J., Teferle, F. N., Meng, X. and Dodson, A. H. (2011). Towards PPP-RTK: Ambiguity resolution in real-time precise point positioning. Advances in Space Research, 47(10), 16641673. doi:10.1016/j.asr.2010.03.030CrossRefGoogle Scholar
GSA (2018a). World's First Dual-Frequency GNSS Smartphone Hits the Market. GSA. Available at https://www.euspa.europa.eu/newsroom/news/world-s-first-dual-frequency-gnss-smartphone-hits-marketGoogle Scholar
Gu, S., Lou, Y., Shi, C. and Liu, J. (2015). Beidou phase bias estimation and its application in precise point positioning with triple-frequency observable. Journal of Geodesy, 89(10), 979992. doi:10.1007/s00190-015-0827-zCrossRefGoogle Scholar
Han, K., Lee, S., Song, Y. J., Lee, H. B., Park, D. H. and Won, J. H. (2021). Precise Positioning with Machine Learning Based Kalman Filter Using GNSS/IMU Measurements From Android Smartphone. Proc. ION GNSS+ 2021, Institute of Navigation, St. Louis, Missouri, USA, September 20–24, pp. 3094–3102. doi:10.33012/2021.18005CrossRefGoogle Scholar
Hatch, R. (1983). The Synergism of GPS Code and Carrier Measurements. In International Geodetic Symposium on Satellite Doppler Positioning, Vol. 2, pp. 1213–1231.Google Scholar
Hu, J., Li, P. and Bisnath, S. (2023,). Towards GNSS Ambiguity Resolution for Smartphones in Realistic Environments: Characterization of Smartphone Ambiguities with RTK, PPP, and PPP-RTK. In Proceedings of the 36th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2023), pp. 2698–2711. doi:10.33012/2023.19285CrossRefGoogle Scholar
Jiang, Y., Gao, Y., Ding, W. and Gao, Y. (2022). GNSS precise positioning for smartphones based on the integration of factor graph optimization and solution separation. Measurement, 203, 111924. doi:10.1016/j.measurement.2022.111924CrossRefGoogle Scholar
Kanhere, A. V., Gupta, S., Shetty, A. and Gao, G. (2021). Improving GNSS Positioning Using Neural Network-Based Corrections. Proc. ION GNSS+ 2021, Institute of Navigation, St. Louis, Missouri, USA, September 20–24, pp. 3068–3080. doi:10.33012/2021.17999CrossRefGoogle Scholar
Li, G. and Geng, J. (2022). Android multi-GNSS ambiguity resolution in the case of receiver channel-dependent phase biases. Journal of Geodesy, 96(10), 118. doi:10.1007/s00190-022-01656-3CrossRefGoogle Scholar
Li, Y., Cai, C. and Xu, Z. (2022a). A combined elevation angle and C/N0 weighting method for GNSS PPP on Xiaomi MI8 smartphones. Sensors, 22(7), 2804. doi:10.3390/s22072804CrossRefGoogle Scholar
Li, B., Miao, W., Chen, G. E. and Li, Z. (2022b). Ambiguity resolution for smartphone GNSS precise positioning: Effect factors and performance. Journal of Geodesy, 96(9), 118. doi:10.1007/s00190-022-01652-7CrossRefGoogle Scholar
Melbourne, W. G. (1985). The Case for Ranging in GPS-Based Geodetic Systems. In: Proceedings of 1st International Symposium on Precise Positioning with the Global Positioning System, Rockville, MD, pp. 373–386.Google Scholar
Paziewski, J. (2020). Recent advances and perspectives for positioning and applications with smartphone GNSS observations. Measurement Science and Technology, 31(9), 091001. doi:10.1088/1361-6501/ab8a7dCrossRefGoogle Scholar
Realini, E., Caldera, S., Pertusini, L. and Sampietro, D. (2017). Precise GNSS positioning using smart devices. Sensors, 17(10), 2434. doi:10.3390/s17102434CrossRefGoogle ScholarPubMed
Song, H., Cheng, S., Xu, Z. and Zang, N. (2022). Research on PPP/INS Algorithm Based on Sequential Sage-Husa Adaptive Filtering. In China Satellite Navigation Conference (CSNC 2022) Proceedings: Volume I, pp. 374–383. Singapore: Springer Nature Singapore. doi:10.1007/978-981-19-2588-7_35CrossRefGoogle Scholar
Suzuki, T. (2021). First Place Award Winner of the Smartphone Decimeter Challenge: Global Optimization of Position and Velocity by Factor Graph Optimization. Proc. ION GNSS+ 2021, Institute of Navigation, St. Louis, Missouri, USA, September 20–24, pp. 2974–2985. doi:10.33012/2021.18109CrossRefGoogle Scholar
Suzuki, T. (2022). Two-Step Optimization of Velocity and Position Using Smartphone's Carrier Phase Observations. Proc. ION GNSS+ 2022, Institute of Navigation, Denver, Colorado, USA, September 19–23, pp. 276–2286. doi:10.33012/2022.18377CrossRefGoogle Scholar
Teunissen, P. J. (1993). Least-Squares Estimation of the Integer GPS Ambiguities. In Invited Lecture, Section IV Theory and Methodology, IAG General Meeting, Beijing, China, pp. 1-16Google Scholar
Teunissen, P. J. (2001). Statistical GNSS Carrier Phase Ambiguity Resolution: A Review. In Proceedings of the 11th IEEE Signal Processing Workshop on Statistical Signal Processing (Cat. No. 01TH8563), pp. 4–12. IEEE. doi:10.1109/SSP.2001.955208CrossRefGoogle Scholar
Wen, Q., Geng, J., Li, G. and Guo, J. (2020). Precise point positioning with ambiguity resolution using an external survey-grade antenna enhanced dual-frequency android GNSS data. Measurement, 157, 107634. doi:10.1016/j.measurement.2020.107634CrossRefGoogle Scholar
Wübbena, G. (1985). Software Developments for Geodetic Positioning with GPS Using TI-4100 Code and Carrier Measurements. In: Proceedings of 1st International Symposium on Precise Positioning with the Global Positioning System, Rockville, MD, pp 403–412.Google Scholar
Yong, C. Z., Harima, K., Rubinov, E., McClusky, S. and Odolinski, R. (2022). Instantaneous best Integer equivariant position estimation using google pixel 4 smartphones for single-and dual-frequency, multi-GNSS short-baseline RTK. Sensors, 22(10), 3772. doi:10.3390/s22103772CrossRefGoogle ScholarPubMed
Zeng, S., Kuang, C. and Yu, W. (2022). Evaluation of real-time kinematic positioning and deformation monitoring using Xiaomi Mi 8 smartphone. Applied Sciences, 12, 435. doi:10.3390/app12010435CrossRefGoogle Scholar