Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-28T03:09:23.926Z Has data issue: false hasContentIssue false

Dynamical convexity of the Euler problem of two fixed centers

Published online by Cambridge University Press:  24 July 2017

SEONGCHAN KIM*
Affiliation:
Institut für Mathematik, Universität Augsburg, Raum L1-2030, Universitätsstrasse 14, D-86159 Augsburg, Germany. e-mail: seongchan.kim@math.uni-augsburg.de

Abstract

We give thorough analysis for the rotation functions of the critical orbits from which one can understand bifurcations of periodic orbits. Moreover, we give explicit formulas of the Conley–Zehnder indices of the interior and exterior collision orbits and show that the universal cover of the regularised energy hypersurface of the Euler problem is dynamically convex for energies below the critical Jacobi energy.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Albers, P., Fish, J., Frauenfelder, U. and van Koert, O. The Conley–Zehnder indices of the rotating Kepler problem. Math. Proc. Camb. Phil. Soc. 154 (2013), 243260.Google Scholar
[2] Albers, P., Frauenfelder, U., van Koert, O. and Paternain, G. Contact geometry of the restricted three body problem. Comm. Pure Appl. Math. 65 (2012), 229263.Google Scholar
[3] Byrd, P. F. and Friedman, M. D. Handbook of Elliptic Integrals for Engineers and Scientists 2nd edition (Springer-Verlag New York, 1971).Google Scholar
[4] Charlier, C. L. Die Mechanik des Himmels (Veit & Comp. Leipzig, 1902).Google Scholar
[5] Cieliebak, K., Floer, A., Hofer, H. and Wysocki, K. Applications of symplectic homology II: stability of the action spectrum. Math. Z. 223 (1996), 2745.Google Scholar
[6] Contopoulos, G. Periodic orbits and chaos around two black holes. Proc. Roy. Soc. London A431 (1990), 183202.Google Scholar
[7] Demin, V. G. Orbits in the problem of two fixed centers. Soviet Astronomy 4 (1961), 10051012.Google Scholar
[8] Dullin, H. R. and Montgomery, R. Syzygies in the two center problem. Nonlinearity 29 (2016), 12121237.Google Scholar
[9] Euler, L. Un corps étant attiré en raison déciproque quarrée des distances vers deux points fixes donnés. Mém. Acad. Berlin (1760), 228–249.Google Scholar
[10] Euler, L. De motu corporis ad duo centra virium fixa attracti. Novi Commentarii Academiae Scientiarum Imperialis Petropolitanae 10 (1766), 207242, 11 (1767), 152–184.Google Scholar
[11] Hofer, H., Wysocki, K. and Zehnder, E. The dynamics on three-dimensional strictly convex energy surfaces. Ann. of Math. 148 (1998), 197289.Google Scholar
[12] Hryniewicz, U. L. Systems of global surfaces of section for dynamically convex Reeb flows on the 3-sphere. J. Symplectic Geom. 12 (2014), 791862.Google Scholar
[13] Kim, S. Homoclinic orbits in the Euler problem of two fixed centers. arXiv:1606.05622v3.Google Scholar
[14] Kim, S. On convexity issues of the Euler problem of two fixed centers. arXiv:1701.07258v2.Google Scholar
[15] Levi-Civita, T. Sur la régularisation du problème des trois corps. Acta Math. 42 (1920), no. 1, 99144.Google Scholar
[16] Moser, J. Regularisation of Kepler's problem and the averaging method on a manifold. Comm. Pure Appl. Math. 23 (1970), 609636.Google Scholar
[17] Pauli, W. Über das Modell des Wasserstoffmolekülions. Ann. Phys. 68 (1922), 177240.Google Scholar
[18] Robbin, J. and Salamon, D. The Maslov index for paths. Topology 32 (1993), 827844.Google Scholar
[19] Strand, M. P. and Reinhardt, W. P. Semiclassical quantization of the low lying electronic states of H +2. J. Chem. Phys. 70 (1979), 38123827.Google Scholar
[20] Waalkens, H., Dullin, H. R. and Richter, P. H. The problem of two fixed centers: bifurcations, actions, monodromy. Phys. D. 196 (3-4) (2004), 265310.Google Scholar