Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-25T15:05:23.673Z Has data issue: false hasContentIssue false

An improved iterative approach with a comprehensive friction model for identifying dynamic parameters of collaborative robots

Published online by Cambridge University Press:  20 March 2024

Zeyu Li
Affiliation:
School of Mechanical Engineering & Automation, Beihang University, Beijing, China
Hongxing Wei*
Affiliation:
School of Mechanical Engineering & Automation, Beihang University, Beijing, China
Chengguo Liu*
Affiliation:
College of Mechanical and Vehicle Engineering, Chongqing University, Chongqing, China
Ye He
Affiliation:
College of Mechanical and Vehicle Engineering, Chongqing University, Chongqing, China
Gang Liu
Affiliation:
School of Mechanical Engineering & Automation, Beihang University, Beijing, China
Haochen Zhang
Affiliation:
School of Mechanical Engineering & Automation, Beihang University, Beijing, China
Weiming Li
Affiliation:
School of Mechanical Engineering & Automation, Beihang University, Beijing, China
*
Corresponding authors: Chengguo Liu; Email: 13297915920@163.com, Hongxing Wei; Email: weihongxing@buaa.edu.cn
Corresponding authors: Chengguo Liu; Email: 13297915920@163.com, Hongxing Wei; Email: weihongxing@buaa.edu.cn

Abstract

Collaborative robots are becoming intelligent assistants of human in industrial settings and daily lives. Dynamic model identification is an active topic for collaborative robots because it can provide effective ways to achieve precise control, fast collision detection and smooth lead-through programming. In this research, an improved iterative approach with a comprehensive friction model for dynamic model identification is proposed for collaborative robots when the joint velocity, temperature and load torque effects are considered. Experiments are conducted on the AUBO I5 collaborative robots. Two other existing identification algorithms are adopted to make comparison with the proposed approach. It is verified that the average error of the proposed I-IRLS algorithm is reduced by over 14% than that of the classical IRLS algorithm. The proposed I-IRLS method can be widely used in various application scenarios of collaborative robots.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Madsen, E., Rosenlund, O. S., Brandt, D. and Zhang, X., “Comprehensive modeling and identification of nonlinear joint dynamics for collaborative industrial robot manipulators,” Control Eng Pract 101, 104462 (2020).CrossRefGoogle Scholar
Zhuang, Z., Guan, Y., Xu, S. and Dai, J. S., “Reconfigurability in automobiles–structure, manufacturing and algorithm for automobiles,” Int J Auto Manuf Mat 1(1), 1 (2022).Google Scholar
Althoff, M., Giusti, A., Liu, S. B. and Pereira, A., “Effortless creation of safe robots from modules throughself-programming and sel-verification,” science robotics 4(13), eaaw1924 (2019).CrossRefGoogle Scholar
Ferraguti, F., Talignani Landi, C., Sabattini, L., Bonfè, M., Fantuzzi, C. and Secchi, C., “A variable admittance control strategy for stable physical human-robot interaction,” Int J Robot Res 38(6), 747765 (2019).CrossRefGoogle Scholar
Hong, M. and Rozenblit, J. W., “An adaptive force guidance system for computer-guided laparoscopy training,” IEEE Trans Cybernetics 52(8), 80198031 (2022).CrossRefGoogle ScholarPubMed
Hu, J. and Xiong, R., “Contact force estimation for robot manipulator using semi-parametric model and disturbance kalman filter,” IEEE Trans Ind Electron PP(4), 11 (2017).Google Scholar
Golluccio, G., Gillini, G., Marino, A. and Antonelli, G., “Robot dynamics identification: A reproducible comparison with experiments on the kinova jaco,” IEEE Robot Autom Mag 28(3), 128140 (2021).CrossRefGoogle Scholar
Gautier, M., “Dynamic Identification of Robots with Power Model,” In: IEEE International Conference on Robotics & Automation, Albuquerque, NM, USA, (IEEE, 1997) pp. 19221927.Google Scholar
Gautier, M. and Poignet, P., “Extended kalman filtering and weighted least squares dynamic identification of robot,” Control Eng Pract 9(12), 13611372 (2001).CrossRefGoogle Scholar
Leboutet, Q., Roux, J., Janot, A., Guadarrama-Olvera, J. R. and Cheng, G., “Inertial parameter identification in robotics: A survey,” Appl Sci 11(9), 4303 (2021).CrossRefGoogle Scholar
Han, Y., Wu, J., Liu, C. and Xiong, Z., “An iterative approach for accurate dynamic model identification of industrial robots,” IEEE Trans Robot 36(5), 15771594 (2020).CrossRefGoogle Scholar
Sousa, C. D. and Cortesão, R., “Physical feasibility of robot base inertial parameter identification: A linear matrix inequality approach,” Int J Robot Res 33(6), 931944 (2014).CrossRefGoogle Scholar
Jung, D., Cheong, J., Park, D. I. and Park, C., “Backward sequential approach for dynamic parameter identification of robot manipulators,” Int J Adv Robot Syst 15(1), 172988141875857 (2018).CrossRefGoogle Scholar
Wensing, P. M., Kim, S. and Slotine, J. J. E., “Linear matrix inequalities for physically consistent inertial parameter identification: A statistical perspective on the mass distribution,” IEEE Robot Auto Lett 3(1), 6067 (2018).CrossRefGoogle Scholar
Lee, T., Wensing, P. M. and Park, F. C., “Geometric robot dynamic identification: A convex programming approach,” IEEE Trans Robot PP(99), 118 (2019).Google Scholar
Janot, A. and Wensing, P. M., “Sequential semidefinite optimization for physically and statistically consistent robot identification,” Control Eng Pract 107, 104699 (2021).CrossRefGoogle Scholar
Iskandar, M. and Wolf, S., “Dynamic Friction Model with Thermal and Load Dependency: Modeling, Compensation, and External Force Estimation,” In: Proceedings - IEEE International Conference on Robotics and Automation, Montreal, QC, Canada (IEEE, 2019) pp. 73677373.CrossRefGoogle Scholar
Tadese, M. A., Yumbla, F., Yi, J.-S., Lee, W., Park, J. and Moon, H., “Passivity guaranteed dynamic friction model with temperature and load correction: Modeling and compensation for collaborative industrial robot,” IEEE Access 9, 7121071221 (2021).CrossRefGoogle Scholar
Canudas de Wit, C., Olsson, H., Astrom, K. J. and Lischinsky, P., “A new model for control of systems with friction,” IEEE Trans Auto Cont 40(3), 419425 (1995).CrossRefGoogle Scholar
Zhang, S., Wang, S., Jing, F. and Tan, M., “Parameter estimation survey for multi-joint robot dynamic calibration case study,” Sci China Inform Sci 62(10), 115 (2019).CrossRefGoogle Scholar
Walter, V., “Experimental robot and payload identification with application to dynamic trajectory compensation,” (2004). Thesis.Google Scholar
Xu, T., Fan, J., Chen, Y., Ng, X., M.H., A. Jr, Fang, Q., Zhu, Y. and Zhao, J., “Dynamic identification of the kuka lbr iiwa robot with retrieval of physical parameters using global optimization,” IEEE Access 8, 108018108031 (2020).CrossRefGoogle Scholar
Xu, T., Fan, J., Fang, Q., Zhu, Y. and Zhao, J., “Robot dynamic calibration on current level: Modeling, identification and applications,” Nonlinear Dynam 109(4), 25952613 (2022).CrossRefGoogle Scholar
Gao, L., Yuan, J., Han, Z., Wang, S. and Wang, N., “A Friction Model with Velocity, Temperature and Load Torque Effects for Collaborative Industrial Robot Joints,” In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada (IEEE, 2017) pp. 30273032.CrossRefGoogle Scholar
Zeyu, L., Hongxing, W., Ziyi, Y. and Gang, L., “An automatic modeling method for modular reconfigurable robots based on model identification,” Intel Serv Robot 16, 6173 (2023).Google Scholar
Hamon, P., Gautier, M. and Garrec, P., “New Dry Friction Model with Load- and Velocity-Dependence and Dynamic Identification of Multi-DOF Robots,” In: IEEE International Conference on Robotics and Automation, Shanghai, China (IEEE, 2011) pp. 10771084.CrossRefGoogle Scholar
Janot, A., “Using the SDP identification method for electromechanical systems,” IFAC-PapersOnLine 54(7), 809814 (2021).CrossRefGoogle Scholar
Simoni, L., Beschi, M., Legnani, G. and Visioli, A., “On the inclusion of temperature in the friction model of industrial robots,” IFAC-PapersOnLine 50(1), 34823487 (2017).CrossRefGoogle Scholar
Hao, L., Pagani, R., Beschi, M. and Legnani, G., “Dynamic and friction parameters of an industrial robot: Identification, comparison and repetitiveness analysis,” Robotics 10(1), 49 (2021).CrossRefGoogle Scholar
Khalil, W. and Kleinfinger, J.-F., “Minimum operations and minimum parameters of the dynamic models of tree structure robots,” IEEE J Robot Auto 3(6), 517526 (1987).CrossRefGoogle Scholar
Swevers, J., Ganseman, C., Tükel, D. B., Schutter, J. D. and a. Brussel, H. V., “Optimal Robot Excitation and Identification,” IEEE Trans Robot Auto 13(5), 730740 (1997).CrossRefGoogle Scholar
Wahrburg, A., Bös, J., Listmann, K. D., Dai, F., Matthias, B. and Ding, H., “Motor-current-based estimation of cartesian contact forces and torques for robotic manipulators and its application to force control,” IEEE Trans Auto Sci Eng 15(2), 879886 (2018).CrossRefGoogle Scholar
Jubien, A., Gautier, M. and Janot, A., Dynamic identification of the Kuka LWR robot using motor torques and joint torque sensors data, 19 (2014).CrossRefGoogle Scholar
Haddadin, S., De Luca, A. and Albu-Schaffer, A., “Robot collisions: A survey on detection, isolation, and identification,” IEEE Trans Robot 33(6), 12921312 (2017).CrossRefGoogle Scholar