Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-12T06:34:20.729Z Has data issue: false hasContentIssue false

Proposed scheme for compact GeV laser plasma accelerator

Published online by Cambridge University Press:  08 June 2006

A.F. LIFSCHITZ
Affiliation:
Laboratoire d'Optique Appliquée, Ecole Polytechnique, ENSTA, CNRS, Palaiseau, France
J. FAURE
Affiliation:
Laboratoire d'Optique Appliquée, Ecole Polytechnique, ENSTA, CNRS, Palaiseau, France
Y. GLINEC
Affiliation:
Laboratoire d'Optique Appliquée, Ecole Polytechnique, ENSTA, CNRS, Palaiseau, France
V. MALKA
Affiliation:
Laboratoire d'Optique Appliquée, Ecole Polytechnique, ENSTA, CNRS, Palaiseau, France
P. MORA
Affiliation:
Laboratoire de Physique Théorique, Ecole Polytechnique, CNRS, Palaiseau, France

Abstract

The design of a two-stage compact GeV electron accelerator is presented. The accelerator is as follows: (1) an ultra-short electron bunch is produced in a state-of-the-art laser-plasma accelerator (injector stage), (2) it is injected into an accelerating stage consisting of a centimeter length low density plasma interacting with a petawatt laser pulse. The parameters for the injector are taken from recent experimental results showing that high quality, ultra-short, and quasi-monoenergetic electron beams are now being produced in laser-plasma accelerators. Simulations performed with WAKE show that this method can lead to the production of high quality, monoenergetic, and sub-50 fs electron bunches at the GeV energy level.

Type
Research Article
Copyright
© 2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Amiranoff, F., Laberge, M., Marqués, J.-R., Moulin, F., Fabre, E., Cros, B., Matthieussent, G., Benkheiri, P., Jacquet, F., Meyer, J. Miné, P., Stenz, C., &Mora, P. (1992). Observation of modulational instability in Nb-laser beat-wave experiments. Phys. Rev. Lett. 68, 37103713.Google Scholar
Amiranoff, F., Baton, S., Bernard, D., Cros, B., Descamps, D., Dorchies, F., Jacquet, F., Malka, V., Matthieussent, G., Marqués, J.-R., Miné, P., Modena, A., Mora, P., Morillo, J. & Najmudin, Z. (1998). Observation of laser wakefield acceleration of electrons. Phys. Rev. Lett. 81, 995998.Google Scholar
Antonsen, T. M. & Mora, P. (1992). Self-focusing and Raman scattering of laser pulses in tenuous plasma. Phys. Rev. Lett. 69, 22042207.Google Scholar
Clayton, C. E., Joshi, C., Darrow, C. & Umstadter, D. (1985). Relativstic plasma-wave excitation by collinear optical mixing. Phys. Rev. Lett. 54, 23432346.Google Scholar
Dewa, H., Ahna, H., Harano, H., Kando, M., Kinoshita, K., Kondoh, S., Kotaki, H., Nakajima, K., Nakanishi, H., Ogata, A., Sakai, H., Uesaka, M., Ueda, T., Watanaba, T. & Yoshii, K. (1998). Experiments of high energy gain laser wakefield acceleration. Nucl. Instr. Meth A. 410, 357363.Google Scholar
Everett, M., Lal, A., Gordon, D., Clayton, C. E., Marsh, K. A. & Joshi, C. (1994). Trapped electron acceleration by a laser-driven relativistic plasma wave. Nature 368, 527529.Google Scholar
Faure, J., Glinec, Y., Pukhov, A., Kiselev, S., Gordienko, S., Lefebvre, E., Rousseau, J.-P., Burgy, F. & Malka, V. (2004). A laaser-plasma accelerator producing monoenergetic electron beams. Nature 431, 541544.Google Scholar
Glinec, Y., Faure, J., Pukhov, A., Kiselev, S., Gordienko, S., Mercier, B. & Malka, V. (2005). Generation of quasi-monoenergetic electron beams using ultrashort and ultraintense laser pulses. Laser Part. Beams 23, 161166.Google Scholar
Gorbunov, L.M., Kalmykov, S.Yu. & Mora, P. (2005). Laser wakefield acceleration by petawatt ultras-short laser pulses. Phys. Plasma 12, 033101.Google Scholar
Hoffmann, D.H.H., Blazevic, A., Ni, P., Rosmej, O., Roth, M., Tahir, N.A., Tauschwitz, A., Udrea, S., Varentsov, D., Weyrich, K. & Maron, Y. (2005). Present and future perspectives for high energy density physics with intense heavy ion and laser beams. Laser Part. Beams 23, 4753.Google Scholar
Kitagawa, Y., Matsumoto, T., Minamihata, T., Sawai, K., Matsuo, K., Mima, K., Nishihara, K., Azechi, H., Tanaka, K. A., Takabe, H. & Nakai, S. (1992). Beat-wave excitation of plasma-wave and observation of accelerated electrons. Phys. Rev. Lett. 68, 4851.CrossRefGoogle Scholar
Nakajima, K., Fisher, D., Kawakubo, T., Nakanishi, H., Ogata, A., Kato, Y., Kitagawa, Y., Kodama, R., Mima, K., Shiraga, H., Suzuki, K., Yamakawa, K., Zhang, T., Sakawa, Y., Shoji, T., Nishida, Y., Yugami, N., Downer, M. & Tajima, T. (1995). Observation of ultrahigh gradient electron acceleration by a self-modulated intense short laser pulse. Phys. Rev. Lett. 74, 44284431.CrossRefGoogle Scholar
Lifschitz, A.F., Faure, J., Malka, V. & Mora, P. (2005). GeV Wakefield of low energy electron bunches using Petawatt lasers. Phys. Plasma.
Malka, V., Faure, J., Marques, J.-R., Amiranoff, F., Rousseau, J.-P., Ranc, S., Chambaret, J.-P., Najmudin, Z. & Solodov, A. (2001). Characterization of electron beams produced by ultrashort (300 fs) laser pulses. Phys. Plasmas 8, 26052608.CrossRefGoogle Scholar
Malka, V., Fritzler, S., Lefebvre, E., Aleonard, M.-M., Burgy, F., Chambaret, J.-P., Chemin, J.-F., Krushelnick, K., Malka, G., Mangles, S.P.D., Najmudin, Z., Pittman, M., Rousseau, J.-P., Scheurer, J.-N., Walton, B. & Dangor, A.E. (2002). Electron acceleration by a wakefield forced by an intense ultrashort laser pulse. Science 298, 15961600.CrossRefGoogle Scholar
Mora, P. & Antonsen, T.M. (1997). Kinetic modeling of intense, short laser pulses propagating in tenuous plasma. Phys. Plasmas 4, 217229.CrossRefGoogle Scholar
Tajima, T. & Dawson, J.M. (1979). Laser electron accelerator. Phys. Rev. Lett. 43, 267270.CrossRefGoogle Scholar