Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-06-02T12:13:54.944Z Has data issue: false hasContentIssue false

Effect of the laser intensity profile on the shock non-uniformity in a directly driven spherical target

Published online by Cambridge University Press:  29 July 2015

Mauro Temporal*
Affiliation:
Centre de Mathématiques et de Leurs Applications, ENS Cachan and CNRS, 61 Av. du President Wilson, F-94235 Cachan CEDEX, France
Benoit Canaud
Affiliation:
CEA, DIF, F-91297 Arpajon CEDEX, France
Warren J. Garbett
Affiliation:
AWE plc, Aldermaston, Reading, Berkshire RG7 4PR, UK
Rafael Ramis
Affiliation:
ETSI Aeronáutica y del Espacio, Universidad Politécnica de Madrid, 28040 Madrid, Spain
*
Email address for correspondence: mauro.temporal@hotmail.com

Abstract

An axially symmetric laser beam configuration irradiating a spherical capsule has been considered in the context of inertial confinement fusion (ICF). The laser beams are located at co-latitudes 49° and 131° and mimic the quad positions in the second cone of the Laser Mégajoule Facility. The capsule is directly irradiated by the laser beams whose energy deposition generates a nearly spherical shock wave. Two-dimensional hydrodynamic numerical simulations have been performed to analyse the non-uniformity of the shock wavefront launched inward throughout the target. Different laser intensity profiles, calculated by the illumination model, have been tested. The performance, in terms of shock non-uniformity, has been compared, and it is found that with an appropriate choice of the laser intensity profile it is possible to control the shock non-uniformity at early times.

Type
Research Article
Copyright
© Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atzeni, S. 1987 The physical basis for numerical fluid simulations in laser fusion. Plasma Phys. Control. Fusion 29, 15351604.CrossRefGoogle Scholar
Atzeni, S. & Meyer-ter-Vehn, J. 2004 The Physics of Inertial Fusion. Oxford Science Press.CrossRefGoogle Scholar
Azechi, H., Mima, K., Shiraga, S., Fujioka, S., Nagatomo, H., Johzaki, T., Jitsuno, T., Key, M., Kodama, R., Koga, M., Kondo, K., Kawanaka, J., Miyanaga, N., Murakami, M., Nagai, K., Nakai, M., Nakamura, H., Nakamura, T., Nakazato, T., Nakao, Y., Nishihara, K., Nishimura, H., Norimatsu, T., Norreys, P., Ozaki, T., Pasley, J., Sakagami, H., Sakawa, Y., Sarukura, N., Shigemori, K., Shimizu, T., Sunahara, A., Taguchi, T., Tanaka, K., Tsubakimoto, K., Fujimoto, Y., Homma, H. & Iwamoto, A. 2013 Present status of fast ignition realization experiment and inertial fusion energy development. Nucl. Fusion 53, 104021.CrossRefGoogle Scholar
Betti, R., Zhou, C. D., Anderson, K. S., Perkins, L. J., Theobald, W. & Solodov, A. A. 2007 Shock ignition of thermonuclear fuel with high areal density. Phys. Rev. Lett. 98, 155001.CrossRefGoogle ScholarPubMed
Bodner, S. E., Colombant, D. G., Gardner, J. H., Lehmberg, R. H., Obenschain, S. P., Phillips, L., Schmitt, A. J., Sethian, J. D., McCrory, R. L., Seka, W., Verdon, C. P., Knauer, J. P., Afeyan, B. B. & Powell, H. T. 1998 Direct-drive laser fusion: Status and prospects. Phys. Plasmas 5, 19011918.CrossRefGoogle Scholar
Boehly, T. R., Brown, D. L., Craxton, R. S., Keck, R. L., Knauer, J. P., Kelly, J. H., Kessler, T. J., Kumpan, S. A., Loucks, S. J., Letzring, S. A., Marshall, F. J., McCrory, R. L., Morse, S. F. B., Seka, W., Soures, J. M. & Verdon, C. P. 1997 Initial performance results of the OMEGA laser system. Opt. Commun. 133, 495596.CrossRefGoogle Scholar
Canaud, B., Fortin, X., Dague, N. & Bocher, J. 2002 Laser Mégajoule irradiation uniformity for direct drive. Phys. Plasmas 9, 42524260.CrossRefGoogle Scholar
Canaud, B. & Garaude, F. 2005 Optimization of laser–target coupling efficiency for direct drive laser fusion. Nucl. Fusion 45, L43L47.CrossRefGoogle Scholar
Canaud, B., Garaude, F., Ballereau, P., Bourgade, J. L., Clique, C., Dureau, D., Houry, M., Jaouen, S., Jourdren, H., Lecler, N., Masse, L., Masson, A., Quach, R., Piron, R., Riz, D., Van der Vliet, J., Temporal, M., Delettrez, J. A. & McKenty, P. W. 2007 High-gain direct-drive inertial confinement fusion for the Laser Mégajoule: recent progress. Plasma Phys. Control. Fusion 49, B601B610.CrossRefGoogle Scholar
Canaud, B. & Temporal, M. 2010 High-gain shock ignition of direct-drive ICF targets for the Laser Mégajoule. New J. Phys. 12, 043037.CrossRefGoogle Scholar
Caruso, A. & Gratton, R. 1968 Some properties of the plasmas produced by irradiating light solids by laser pulses. Plasma Phys. 10, 867877.CrossRefGoogle Scholar
Fernandez, J. C., Honrubia, J. J., Albright, B. J., Flippo, K. A., Gautier, D. C., Hegelich, B. M., Schmitt, M. J., Temporal, M. & Yin, L. 2009 Progress and prospects of ion-driven fast ignition. Nucl. Fusion 49, 065004.CrossRefGoogle Scholar
Gus’kov, S. Y. 2001 Direct ignition of inertial fusion targets by a laser-plasma ion stream. Quantum Electron. 31, 885890.CrossRefGoogle Scholar
He, X. T. & Zhang, W. Y. 2007 Inertial fusion research in China. Eur. Phys. J. D 44, 227231.CrossRefGoogle Scholar
Hegelich, B. M., Albright, B. J., Cobble, J., Flippo, K., Letzring, S., Paffett, M., Ruhl, H., Schreiber, J., Schulze, R. K. & Fernandez, J. C. 2006 Laser acceleration of quasi-mono energetic MeV ion beams. Nature 439, 04400.CrossRefGoogle Scholar
Honrubia, J. J., Fernández, J. C., Hegelich, B. M., Murakami, M. & Enriquez, C. D. 2014 Fast ignition driven by quasi-mono energetic ions: optimal ion type and reduction of ignition energies with an ion beam array. Laser Part. Beams 32, 419427.CrossRefGoogle Scholar
Hopps, N., Danson, C., Duffield, S., Egan, D., Elsmere, S., Girling, M., Harvey, E., Hillier, D., Norman, M., Parker, S., Treadwell, P., Winter, D. & Bett, T. 2013 Overview of laser systems for the Orion facility at the AWE. Appl. Opt. 52, 35973607.CrossRefGoogle ScholarPubMed
Lehmberg, R. H. & Goldhar, J. 1987 Use of incoherence to produce smooth and controllable irradiation profiles with KrF fusion lasers. Fusion Technol. 11, 532541.CrossRefGoogle Scholar
Lindl, J. 1995 Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas 2, 39334024.CrossRefGoogle Scholar
Lindl, J. D. 1998 Inertial Confinement Fusion: The Quest for Ignition and High Gain Using Indirect Drive. Springer.Google Scholar
Lindl, J., Landen, O., Edwards, J. & Moses, E. 2014 Review of the National Ignition Campaign 2009–2012. Phys. Plasmas 21, 020501; NIC team.CrossRefGoogle Scholar
Lion, C. 2010 The LMJ program: an overview. J. Phys.: Conf. Ser. 244, 012003.Google Scholar
Meyerhofer, D. D., McCrory, R. L., Betti, R., Boehly, T. R., Casey, D. T., Collins, T. J. B., Craxton, R. S., Delettrez, J. A., Edgell, D. H., Epstein, R., Fletcher, K. A., Frenje, J. A., Glebov, Y. Y., Goncharov, V. N., Harding, D. R., Hu, S. X., Igumenshchev, I. V., Knauer, J. P., Li, C. K., Marozas, J. A., Marshall, F. J., McKenty, P. W., Nilson, P. M., Padalino, S. P., Petrasso, R. D., Radha, P. B., Regan, S. P., Sangster, T. C., Séguin, F. H., Seka, W., Short, R. W., Shvarts, D., Skupsky, S., Soures, J. M., Stoeckl, C., Theobald, W. & Yaakobi, B. 2011 High-performance inertial confinement fusion target implosions on OMEGA. Nucl. Fusion 51, 053010.CrossRefGoogle Scholar
Miller, G. H., Moses, E. I. & Wuest, C. R. 2004 The National Ignition Facility: enabling fusion ignition for the 21st century. Nucl. Fusion 44, S228S238.CrossRefGoogle Scholar
Mima, K., Tanaka, K. A., Kodama, R., Johzaki, T., Nagatomo, H., Shiraga, H., Miyanaga, N., Murakami, M., Azechi, H., Nakai, M., Norimatu, T., Nagai, K., Taguchi, T. & Sakagami, H. 2007 Recent results and future prospects of laser fusion research at ILE, Osaka. Eur. Phys. J. D 44, 259264.CrossRefGoogle Scholar
Moses, E. I., Boyd, R. N., Remington, B. A., Keane, C. J. & Al-Ayat, R. 2009 The National Ignition Facility: ushering in a new age for high energy density science. Phys. Plasmas 16, 041006.CrossRefGoogle Scholar
Murakami, M. 1995 Irradiation system based on dodecahedron for inertial confinement fusion. Appl. Phys. Lett. 66, 15871589.CrossRefGoogle Scholar
Murakami, M., Nishihara, K. & Azechi, H. 1993 Irradiation non-uniformity due to imperfections of laser beams. J. Appl. Phys. 74, 802808.CrossRefGoogle Scholar
Nuckolls, J. H., Wood, L., Thiessen, A. & Zimmermann, G. B. 1972 Laser compression of matter to super-high densities: thermonuclear (CTR) applications. Nature 239, 139142.CrossRefGoogle Scholar
Ramis, R., Temporal, M., Canaud, B. & Brandon, V. 2014 Three-dimensional symmetry analysis of a direct-drive irradiation scheme for the Laser Megajoule facility. Phys. Plasmas 21, 082710.CrossRefGoogle Scholar
Randall, C. J., Albritton, J. R. & Thomson, J. J. 1981 Theory and simulation of stimulated Brillouin scatter excited by nonabsorbed light in laser fusion systems. Phys. Fluids 24, 1474.CrossRefGoogle Scholar
Roth, M., Cowan, T. E., Key, M. H., Hatchett, S. P., Brown, C., Fountain, W., Johnson, J., Pennington, D. M., Snavely, R. A., Wilks, S. C., Yasuike, K., Ruhl, H., Pegoraro, F., Bulanov, S. V., Campbell, E. M., Perry, M. D. & Powell, H. 2001 Fast ignition by intense laser-accelerated proton beams. Phys. Rev. Lett. 86, 435439.CrossRefGoogle ScholarPubMed
Schmitt, A. J. 1984 Absolutely uniform illumination of laser fusion pellets. Appl. Phys. Lett. 44, 399401.CrossRefGoogle Scholar
Shiraga, H., Nagatomo, H., Theobald, W., Solodov, A. A. & Tabak, M. 2014 Fast ignition integrated experiments and high-gain point design. Nucl. Fusion 54, 054005.CrossRefGoogle Scholar
Skupsky, S. & Lee, K. 1983 Uniformity of energy deposition for laser driven fusion. J. Appl. Phys. 54, 36623671.CrossRefGoogle Scholar
Skupsky, S., Marozas, J. A., Craxton, R. S., Betti, R., Collins, T. J. B., Delettrez, J. A., Goncharov, V. N., McKenty, P.-W., Radha, P. B., Knauer, J. P., Marshall, F. J., Harding, D. R., Kilkenny, J. D., Meyerhofer, D. D., Sangster, T. C. & McCrory, R. L. 2004 Polar direct drive on the National Ignition Facility. Phys. Plasmas 11, 27632770.CrossRefGoogle Scholar
Tabak, M., Hammer, J., Glinsky, M. E., Kruer, W. L., Wilks, S., Woodworth, J., Campbell, E. M., Perry, M. D. & Mason, R. J. 1994 Ignition and high gain with ultrapowerful lasers. Phys. Plasmas 1, 16261634.CrossRefGoogle Scholar
Temporal, M. & Canaud, B. 2011b Stochastic homogenization of the laser intensity to improve the irradiation uniformity of capsules directly driven by thousands laser beams. Eur. Phys. J. D 65, 447451.CrossRefGoogle Scholar
Temporal, M., Canaud, B., Garbett, W. J., Philippe, F. & Ramis, R. 2013 Polar direct drive illumination provided by the Orion facility. Eur. Phys. J. D 67, 205.CrossRefGoogle Scholar
Temporal, M., Canaud, B., Garbett, W. J., Philippe, F. & Ramis, R. 2015 Overlapping laser profiles used to mitigate the negative effects of beam uncertainties in direct-drive LMJ configurations. Eur. Phys. J. D 69, 12.CrossRefGoogle Scholar
Temporal, M., Canaud, B., Garbett, W. J. & Ramis, R. 2014a Irradiation uniformity at the Laser MegaJoule facility in the context of the shock ignition scheme. High Power Laser Sci. Eng. 2, e8.CrossRefGoogle Scholar
Temporal, M., Canaud, B., Garbett, W. J. & Ramis, R. 2014b Comparison between illumination model and hydrodynamic simulation for a direct drive laser irradiated target. Laser Part. Beams 32, 549556.CrossRefGoogle Scholar
Temporal, M., Canaud, B., Garbett, W. J. & Ramis, R. 2014c Optimal laser intensity profiles for a uniform target illumination in direct-drive inertial confinement fusion. High Power Laser Sci. Eng. 2, e37.CrossRefGoogle Scholar
Temporal, M., Canaud, B., Garbett, W. J. & Ramis, R. 2014d Numerical analysis of the direct drive illumination uniformity for the Laser MegaJoule facility. Phys. Plasmas 21, 012710.CrossRefGoogle Scholar
Temporal, M., Canaud, B. & Le Garrec, B. J. 2010 Irradiation uniformity and zooming performances for a capsule directly driven by a $32\times 9$ laser beams configuration. Phys. Plasmas 17, 022701.Google Scholar
Temporal, M., Honrubia, J. J. & Atzeni, S. 2002 Numerical study of fast ignition of ablatively imploded deuterium–tritium fusion capsules by ultra-intense proton beams. Phys. Plasmas 9, 30983107.CrossRefGoogle Scholar
Temporal, M., Ramis, R., Canaud, B., Brandon, V., Laffite, S. & Le Garrec, B. J. 2011a Irradiation uniformity of directly driven inertial confinement fusion targets in the context of the shock-ignition scheme. Plasma Phys. Control. Fusion 53, 124008.CrossRefGoogle Scholar
Tian, C., Shan, L., Zhang, B., Zhou, W., Liu, D., Bi, B., Zhang, F., Wang, W., Zhang, B. & Gu, Y. 2015 Realization of high irradiation uniformity for direct drive ICF at the SG-III prototype laser facility. Eur. Phys. J. D 69, 54.CrossRefGoogle Scholar
Tikhonchuk, V. T., Schlegel, T., Regan, C., Temporal, M., Feugeas, J. L., Nicolai, P. & Ribeyre, X. 2010 Fast ion ignition with ultra-intense laser pulses. Nucl. Fusion 50, 045003.CrossRefGoogle Scholar
Weilacher, F., Radha, P. B., Collins, T. J. B. & Marozas, J. A. 2015 The effect of laser spot shapes on polar-direct-drive implosions on the National Ignition Facility. Phys. Plasmas 22, 032701.CrossRefGoogle Scholar