Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-25T15:23:10.467Z Has data issue: false hasContentIssue false

Biodiversity: Past, Present, and Future

Published online by Cambridge University Press:  14 July 2015

J. John Sepkoski Jr.*
Affiliation:
Department of the Geophysical Sciences, University of Chicago, Chicago, Illinois 60637

Extract

Biodiversity is the number and variability of genes, species, and communities in space and time (Norse et al., 1986; Wilson, 1988; Heywood and Baste, 1995). The fundamental question that has governed its study in modern times is Hutchinson's (1959): “Why are there so many kinds of animals?” In more recent decades, a somber subquestion has been added: How many species are dying every year (e.g., Wilson, 1992)?

Type
Presidential Address
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ausich, W. I., Meyer, D. L., and Waters, J. A. 1988. Middle Mississippian blastoid extinction event. Science, 240:796798.CrossRefGoogle ScholarPubMed
Bambach, R. K. 1989. Similarities and differences in diversity patterns at different taxonomic levels using traditional (non-cladistic) groups. Geological Society of America Abstracts with Program, 21(6):A206A207.Google Scholar
Bambach, R. K., and Sepkoski, J. J. Jr. 1992. Historical evolutionary information in the traditional Linnean hierarchy, p. 16. In Lidgard, S. and Crane, P. R. (eds.), Fifth North American Paleontological Convention, Abstracts and Programs. Paleontological Society Special Publication, 6.Google Scholar
Benton, M. J. (ed.). 1993. The Fossil Record 2. Chapman & Hall, London.Google Scholar
Benton, M. J. (ed.). 1995. Testing the time axis of phylogenies. Philosophical Transactions of the Royal Society of London B, 348:510.Google Scholar
Benton, M. J. (ed.)., and Storrs, G. W. 1994. Testing the quality of the fossil record: paleontological knowledge is improving. Geology, 22:111114.2.3.CO;2>CrossRefGoogle Scholar
Benton, M. J. (ed.)., and Storrs, G. W. 1996. Diversity in the past: comparing cladistic phylogenies and stratigraphy., p. 1940. In Hochberg, M. E., Clobert, J., and Barbault, R. (eds.), Aspects of the Genesis and Maintenance of Biological Diversity. Clarendon, Oxford.CrossRefGoogle Scholar
Boucot, A. J. 1975. Evolution and Extinction Rate Controls. Elsevier, Amsterdam, 427 p.Google Scholar
Bowring, S. A., Grotzinger, J. P., Isachsen, C. E., Knoll, A. H., Pelechaty, S. M., and Kolosov, P. 1993. Calibrating rates of Early Cambrian evolution. Science, 261:12931298.CrossRefGoogle ScholarPubMed
Briggs, J. C. 1994. Mass extinctions: fact or fallacy?, p. 230236. In Glen, W. (ed.), The Mass Extinction Debates: How Science Works in a Crisis. Stanford University Press, Stanford, California.CrossRefGoogle Scholar
D'Hondt, S., and Keller, G. 1991. Some patterns of planktic foraminiferal assemblage turnover at the Cretaceous-Tertiary boundary. Marine Micropaleontology, 17:77118.CrossRefGoogle Scholar
D'Hondt, S., Herbert, T. D., King, J., and Gibson, C. 1996. Planktic foraminifera, asteroids, and marine production: death and recovery at the Cretaceous-Tertiary boundary. Geological Society of America Special Paper, 307:303317.Google Scholar
Ehrlich, P. R., and Ehrlich, A. H. 1981. Extinction: The Causes and Consequences of the Disappearance of Species. Random House, New York.Google Scholar
Ehrlich, P. R., and Wilson, E. O. 1991. Biodiversity studies: science and policy. Science, 253:5862.CrossRefGoogle ScholarPubMed
Flessa, K. W. 1975. Area, continental drift, and mammalian diversity. Paleobiology, 1:189194.CrossRefGoogle Scholar
Gaston, K. J., and Williams, P. H. 1993. Mapping the world's species. The higher taxon approach. Biodiversity Letters, 1:28.CrossRefGoogle Scholar
Gaston, K. J., Williams, P. H., Eggketib, P., and Humphries, C. J. 1995. Large scale patterns of biodiversity: spatial variation in family richness. Proceedings of the Royal Society of London B, 260:149154.Google Scholar
Grassle, J. F., and Maciolek, N. J. 1992. Deep-sea species richness: regional and local diversity estimates from quantitative bottom samples. American Naturalist, 139:313341.CrossRefGoogle Scholar
Hammond, P. M. 1995. The current magnitude of biodiversity, p. 113138. In Heywood, V. H. (ed.), Global Biodiversity Assessment. Cambridge University Press, Cambridge.Google Scholar
Hansen, T. A., Farrel, B. R., and Upshaw, B. III. 1993. The first 2 million years after the Cretaceous-Tertiary boundary in east Texas: rate and paleoecology of the molluscan recovery. Paleobiology, 19:251265.CrossRefGoogle Scholar
Harland, W. B., Armstrong, R., Cox, A. V., Craig, L. E., Smith, A. G., and Smith, D. G. 1990. A Geologic Time Scale 1989. Cambridge University Press, Cambridge.Google Scholar
Harland, W. B., Holland, C. H., House, M. R., Hughes, N. F., Reynolds, A. B., Rudwick, M. J. S., Salterthwaite, G. E., Tarlo, L. B. H., and Wiley, E. C. (eds.). 1967. The Fossil Record. Geological Society of London, London.Google Scholar
Hart, M. B. (ed.). 1996. Biotic Recovery from Mass Extinction Events. Geological Society of London Special Paper 102.CrossRefGoogle Scholar
Heywood, V. H., and Baste, I. 1995. Introduction, p. 519. In Heywood, V. H. (ed.), Global Biodiversity Assessment. Cambridge University Press, Cambridge.Google Scholar
Hollander, D. J., McKenzie, J. A., and Hsü, K. J. 1993. Carbon isotope evidence for unusual plankton blooms and fluctuations of surface water CO2 in “Strangelove Ocean” after terminal Cretaceous event. Palaeogeography, Palaeoclimatology, Palaeoecology, 104:229237.CrossRefGoogle Scholar
Hsü, K. J., and McKenzie, J. A. 1985. A “Strangelove” ocean in the earliest Tertiary, p. 487492. In Sundquist, E. T. and Broecker, W. S. (eds.), The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present. American Geophysical Union Geophysical Monograph, 32.Google Scholar
Hutchinson, G. E. 1959. Homage to Santa Rosalia or why are there so many kinds of animals. American Naturalist, 93:145159.CrossRefGoogle Scholar
Jablonski, D., and Flessa, K. W. 1986. The taxonomic structure of shallow-water marine faunas: implications for Phanerozoic extinction. Malacologia, 27:4366.Google Scholar
Jablonski, D., and Raup, D. M. 1995. Selectivity of the end-Cretaceous marine bivalve extinctions. Science, 268:389391.CrossRefGoogle ScholarPubMed
Kauffman, E. G., and Erwin, D. H. 1995. Surviving mass extinctions. Geotimes, March 1995:1417.Google Scholar
Kump, L. R. 1991. Interpreting carbon-isotope excursions: Strangelove oceans. Geology, 19:299302.2.3.CO;2>CrossRefGoogle Scholar
Lawton, J. H., and May, R. M. (eds.). 1995. Extinction Rates. Oxford University Press, Oxford.CrossRefGoogle Scholar
Maxwell, W. D., and Benton, M. J. 1990. Historical tests of the absolute completeness of the fossil record of tetrapods. Paleobiology, 16:322335.CrossRefGoogle Scholar
May, R. M. 1988. How many species are there on Earth? Science, 241:14411449.CrossRefGoogle ScholarPubMed
May, R. M. 1990. How many species? Philosophical Transactions of the Royal Society of London B, 330:293304.Google Scholar
May, R. M. 1992. Bottoms up for the oceans. Nature, 357:278279.CrossRefGoogle Scholar
May, R. M., Lawton, J. H., and Stork, N. E. 1995. Assessing extinction rates, p. 124. In Lawton, J. H. and May, R. M. (eds.), Extinction Rates. Oxford University Press, Oxford.Google Scholar
Moore, R. C., Teichert, C., Robison, R. A., and Kaesler, R. L. (eds.). 1953-1992. Treatise on Invertebrate Paleontology. Geological Society of American and University of Kansas Press, Lawrence, Kansas.Google Scholar
Myers, N. 1976. An expanded approach to the problem of disappearing species. Science, 193:198202.CrossRefGoogle Scholar
Newell, N. D. 1967. Revolutions in the history of life. Geological Society of America Special Paper, 89:6391.CrossRefGoogle Scholar
Norell, M. A., and Novacek, M. J. 1992. The fossil record and evolution: comparing cladistic and paleontologic evidence for vertebrate history. Science, 255:16901693.CrossRefGoogle ScholarPubMed
Norse, E. A., Rosenbaum, K. L., Wiloove, D. S., Wilcox, B. A., Romme, W. H., Johnson, D. W., and Stout, M. L. 1986. Conserving biological diversity in our national forests. The Wilderness Society, Washington, D.C.Google Scholar
Palmer, A. R. 1979. Biomere boundaries re-examined. Alcheringa, 3:3341.CrossRefGoogle Scholar
Palmer, A. R. 1982. Biomere boundaries: a possible test for extraterrestrial perturbation of the biosphere. Geological Society of America Special Paper, 190:469476.CrossRefGoogle Scholar
Palmer, A. R. 1984. The biomere problem: evolution of an idea. Journal of Paleontology, 58:599611.Google Scholar
Paul, C. R. C. 1982. The adequacy of the fossil record, p. 75117. In Joysey, K. A. and Friday, A. E. (eds.), Problems of Phylogenetic Reconstruction. Academic Press, London.Google Scholar
Paul, C. R. C. 1985. The adequacy of the fossil record reconsidered. Special Papers in Palaeontology, 33:715.Google Scholar
Phillips, J. 1860. Life on Earth: Its Origin and Succession. Macmillan, Cambridge.Google Scholar
Pimm, S. L., Russell, G. J., Gittleman, J. L., and Brooks, T. M. 1995. The future of biodiversity. Science, 269:347350.CrossRefGoogle ScholarPubMed
Prance, G. T. 1994. A comparison of the efficacy of higher taxa and species numbers in the assessment of biodiversity in the neotropics. Philosophical Transactions of the Royal Society of London B, 345:8999.Google Scholar
Raup, D. M. 1972. Taxonomic diversity during the Phanerozoic. Science, 177:10651071.CrossRefGoogle ScholarPubMed
Raup, D. M. 1976. Species diversity in the Phanerozoic: an interpretation. Paleobiology, 2:289297.CrossRefGoogle Scholar
Raup, D. M. 1979a. Biases in the fossil record of species and genera. Bulletin of the Carnegie Museum of Natural History, 13:8591.Google Scholar
Raup, D. M. 1979b. Size of the Permo-Triassic bottleneck and its evolutionary implications. Science, 206:217218.CrossRefGoogle ScholarPubMed
Raup, D. M. 1991. A kill curve for Phanerozoic marine species. Paleobiology, 17:3748.CrossRefGoogle ScholarPubMed
Raymond, A., Kelly, P. H., and Lutken, C. B. 1990. Dead by degrees: articulate brachiopods, paleoclimate and the mid-Carboniferous extinction event. Palaios, 5:111123.CrossRefGoogle Scholar
Rosenzweig, M. L. 1995. Species Diversity in Space and Time. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Senowbari-Daryan, B. 1990. Die systematische Stellung der thalamiden Schwämme und ihre Bedeutung in der Erdgeschichte. Münchner Geowissenschaftliche Abhandlungen: Reihe H, Geologie und Paläontologie, 21:1326.Google Scholar
Sepkoski, J. J. Jr. 1979. A kinetic model of Phanerozoic taxonomic diversity. II. Early Phanerozoic families and multiple equilibria. Paleobiology, 5:222251.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1981. A factor analytic description of the Phanerozoic marine fossil record. Paleobiology, 7:3653.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1984. A kinetic model of Phanerozoic taxonomic diversity. III. Post-Paleozoic families and mass extinctions. Paleobiology, 10:246267.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1992. A compendium of fossil marine animal families, 2nd edition, Milwaukee Public Museum Contributions in Biology and Geology, 83:1156.Google ScholarPubMed
Sepkoski, J. J. Jr. 1993a. Ten years in the library: new data confirm paleontological patterns. Paleobiology, 19:4351.CrossRefGoogle ScholarPubMed
Sepkoski, J. J. Jr. 1993b. Phanerozoic diversity at the genus level: problems and prospects. Geological Society of America Abstracts with Program, 25(6):A50.Google Scholar
Sepkoski, J. J. Jr. 1994. What I did with my research career: or how research on biodiversity yielded data on extinction, p. 132144. In Glen, W. (ed.), The Mass-Extinction Debates: How Science Works in a Crisis. Stanford University Press, Stanford, California.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1995. The Ordovician radiations: diversification and extinction shown by global genus-level taxonomic data, p. 393396. In Cooper, J. D., Droser, M. L., and Finey, S. C. (eds.), Ordovician Odyssey: Short Papers for the Seventh International Symposium on the Ordovician System. Pacific Section, Society for Sedimentary Geology (SEPM).Google Scholar
Sepkoski, J. J. Jr. 1996a. Patterns of Phanerozoic extinction: a perspective from global data bases, p. 3151. In Walliser, O. H. (ed.), Global Events and Event Stratigraphy. Springer, Berlin.Google Scholar
Sepkoski, J. J. Jr. 1996b. Competition in macroevolution: the double wedge revisited, p. 211255. In Jablonski, D., Erwin, D. H., and Lipps, J. H. (eds.), Evolutionary Paleobiology. University of Chicago Press, Chicago.Google Scholar
Sheehan, P. M., Coorough, P. J., and Fastovsky, D. E. 1996. Biotic selectivity during the K/T and Late Ordovician extinction events. Geological Society of America Special Paper, 307:477489.Google Scholar
Signor, P. W. III. 1985. Real and apparent trends in species richness through time, p. 129150. In Valentine, J. W. (ed.), Phanerozoic Diversity Patterns: Profiles in Macroevolution. Princeton University Press, Princeton, New Jersey.Google Scholar
Signor, P. W. III. 1990. The geologic history of diversity. Annual Reviews of Ecology and Systematics, 21:509539.CrossRefGoogle Scholar
Simpson, G. G. 1944. Tempo and Mode in Evolution. Columbia University Press, New York.Google Scholar
Signor, P. W. III. 1953. The Major Features of Evolution. Columbia University Press, New York.Google Scholar
Signor, P. W. III. 1960. The history of life, p. 117180. In Tax, S. (ed.), Evolution after Darwin, Volume 1, Chicago University Press, Chicago.Google Scholar
Stehli, F. G., McAlester, A. L., and Helsley, C. E. 1967. Taxonomic diversity of Recent bivalves and some implications for geology. Geological Society of America Bulletin, 78:455466.CrossRefGoogle Scholar
Valentine, J. W. 1969. Patterns of taxonomic and ecological structure of the shelf benthos during Phanerozoic time. Palaeontology, 12:684709.Google Scholar
Valentine, J. W. 1989. How good is the fossil record? Clues from the California Pleistocene. Paleobiology, 15:8394.CrossRefGoogle Scholar
Valentine, J. W. 1990. The macroevolution of clade shape, p. 128150. In Ross, R. M. and Allmon, W. D. (eds.), Causes of Evolution: A Paleontological Perspective. University of Chicago Press, Chicago.Google Scholar
Vitrosek, P., Ehrlich, P. R., Ehrlich, A. H., and Matson, P. 1986. Human appropriation of the products of photosynthesis. BioScience, 36:368373.Google Scholar
Walliser, O. H. 1996. Patterns and causes of global events, p. 719. In Walliser, O. H. (ed.), Global Events and Event Stratigraphy. Springer, Berlin.CrossRefGoogle Scholar
Williams, P. H., and Gaston, K. J. 1994. Measuring more of biodiversity: can higher-taxon richness predict wholescale species richness? Biological Conservation, 67:211217.CrossRefGoogle Scholar
Williams, P. H., Humphries, C. J., and Gaston, K. J. 1994. Centres of seed-plant diversity: the family way. Proceedings of the Royal Society of London B, 256:6778.Google Scholar
Wilson, E. O. (ed.). 1988. Biodiversity. National Academy Press, Washington, D.C.Google Scholar
Wilson, E. O. (ed.). 1992. The Diversity of Life, Belknap Press, Cambridge, Massachusetts.Google Scholar
Winston, J. E. 1992. Systematics and marine conservation, p. 144168. In Eldredge, N. (ed.), Systematics, Ecology, and the Biodiversity Crisis. Columbia University Press, New York.Google Scholar