Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-29T17:00:27.836Z Has data issue: false hasContentIssue false

Advances in diagnostic approaches to Fasciola infection in animals and humans: An overviews

Published online by Cambridge University Press:  25 January 2024

A. Aftab
Affiliation:
Molecular and Cellular Engineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj-211007, Uttar Pradesh, India Division of Parasitology, Indian Veterinary Research Institute, Izatnagar-243122, Bareilly, Uttar Pradesh, India
O.K. Raina
Affiliation:
Division of Parasitology, Indian Veterinary Research Institute, Izatnagar-243122, Bareilly, Uttar Pradesh, India
A. Maxton
Affiliation:
Genetics and Plant Breeding, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj-211007, Uttar Pradesh, India
S.A. Masih*
Affiliation:
Molecular and Cellular Engineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj-211007, Uttar Pradesh, India
*
Corresponding author: S.A. Masih; Email: sam.masih@shiats.edu.in

Abstract

Fasciolosis, caused by Fasciola hepatica and F. gigantica, is an impediment to the livestock industry’s expansion and has a massively negative socio-economic impact due to its widespread prevalence in livestock. It is a waterborne zoonosis affecting human populations in the countries where rural economies are associated with livestock rearing. Conventional diagnosis of Fasciola infection is done by detecting parasite eggs in the faeces of infected animals or by immunological methods. Accurate and quick immunodiagnosis of Fasciola infection in animals and humans is based on the detection of antibodies and specific antigens expressed in the prepatent stage of the parasite. Both molecular and serodiagnostic tests developed thus far have enhanced the reliability of Fasciola diagnosis in both man and animals but are not widely available in resource-poor nations. A pen-side diagnostic test based on a lateral flow assay or a DNA test like loop-mediated isothermal amplification (LAMP) would be simple, fast, and cost-effective, enabling clinicians to treat animals in a targeted manner and avoid the development of drug resistance to the limited flukicides. This review focuses on the recent advances made in the diagnosis of this parasite infection in animals and humans.

Type
Review Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aftab, A, Lall, R, Bisen, S, Anandanarayanan, A, Rialch, A, Chamuah, JK, Yadav, S, Silamparasan, M, Raina, OK (2020). Serodiagnosis of Fasciola gigantica infection in buffaloes with native cathepsin-L proteases and recombinant cathepsin L1-D. Acta Parasitologica 65, 2, 413421. https://doi.org/10.2478/s11686-020-00177-3Google Scholar
Alvarez Rojas, CA, Jex, AR, Gasser, RB, Scheerlinck, JP (2014). Techniques for the diagnosis of Fasciola infections in animals: Room for improvement. Advances in Parasitology 85, 65107. https://doi.org/10.1016/B978-0-12-800182-0.00002-7Google Scholar
Amiri, S, Shemshadi, B, Shirali, S, Kheirandish, F, Fallahi, S (2021). Accurate and rapid detection of Fasciola hepatica copro-DNA in sheep using loop-mediated isothermal amplification (LAMP) technique. Veterinary Medicine and Science 7, 4, 13161324. https://doi.org/10.1002/vms3.455Google Scholar
Anderson, N, Luong, TT, Vo, NG, Bui, KL, Smooker, PM, Spithill, TW (1999). The sensitivity and specificity of two methods for the detection of Fasciola infections in cattle. Veterinary Parasitology 83, 1, 1524. https://doi.org/10.1016/s0304-4017(99)00026-6Google Scholar
Andrews, SJ (1999). The life cycle of Fasciola hepatica. In Dalton, JP (ed.), Fasciolosis. Oxon, UK: CABI, 130.Google Scholar
Arifin, MI, Höglund, J, Novobilský, A (2016). Comparison of molecular and conventional methods for the diagnosis of Fasciola hepatica infection in the field. Veterinary Parasitology 232, 811. https://doi.org/10.1016/j.vetpar.2016.11.003CrossRefGoogle ScholarPubMed
Avramenko, RW, Redman, EM, Lewis, R, Bichuette, MA, Palmeira, BM, Yazwinski, TA, Gilleard, JS (2017). The use of nemabiome metabarcoding to explore gastro-intestinal nematode species diversity and anthelmintic treatment effectiveness in beef calves. International Journal for Parasitology 47, 13, 893902. https://doi.org/10.1016/j.ijpara.2017.06.006CrossRefGoogle ScholarPubMed
Ayaz, S, Ullah, R, AbdEl-Salam, NM, Shams, S, Niaz, S (2014). Fasciola hepatica in some buffaloes and cattle by PCR and microscopy. Scientific World Journal 2014, 462084. https://doi.org/10.1155/2014/462084Google Scholar
Beesley, NJ, Cwiklinski, K, Allen, K, Hoyle, RC, Spithill, TW, La Course, EJ, Williams, DJL, Paterson, S, Hodgkinson, JE (2023). A major locus confers triclabendazole resistance in Fasciola hepatica and shows dominant inheritance. PLoS Pathogens 19, 1, e1011081. https://doi.org/10.1371/journal.ppat.1011081CrossRefGoogle Scholar
Berasain, P, Carmona, C, Frangione, B, Dalton, JP, Goni, F (1997). Fasciola hepatica: Parasite secreted proteinases degrade all human IgG subclasses: Determination of the specific cleavage sites and identification of the immunoglobulin fragments produced. Exp Parasitol. 94, 99110.Google Scholar
Brockwell, YM, Elliott, TP, Anderson, GR, Stanton, R, Spithill, TW, Sangster, NC (2013). Confirmation of Fasciola hepatica resistant to triclabendazole in naturally infected Australian beef and dairy cattle. International Journal for Parasitology. Drugs and Drug Resistance 4, 1, 4854. https://doi.org/10.1016/j.ijpddr.2013.11.005Google Scholar
Calvani, NED, Šlapeta, J (2021). Fasciola species introgression: Just a fluke or something more? Trends in Parasitology 37, 1, 2534. https://doi.org/10.1016/j.pt.2020.09.008Google Scholar
Cancela, M, Acosta, D, Rinaldi, G, Silva, E, Durán, R, Roche, L, Zaha, A, Carmona, C, Tort, JF (2008). A distinctive repertoire of cathepsins is expressed by juvenile invasive Fasciola hepatica. Biochimie 90, 10, 14611475. https://doi.org/10.1016/j.biochi.2008.04.020CrossRefGoogle ScholarPubMed
Caravedo, MA, Cabada, MM (2020). Human fascioliasis: Current epidemiological status and strategies for diagnosis, treatment, and control. Research and Reports in Tropical Medicine 11, 149158. https://doi.org/10.2147/RRTM.S237461Google Scholar
Carmona, C, Tort, JF (2017). Fasciolosis in South America: Epidemiology and control challenges. Journal of Helminthology 91, 2, 99109. https://doi.org/10.1017/S0022149X16000560Google Scholar
Carnevale, S, Pantano, ML, Kamenetzky, L, Malandrini, JB, Soria, CC, Velásquez, JN (2015). Molecular diagnosis of natural fasciolosis by DNA detection in sheep faeces. Acta Parasitologica 60, 2, 211217. https://doi.org/10.1515/ap-2015-0030Google Scholar
Chantree, P, Wanichanon, C, Phatsara, M, Meemon, K, Sobhon, P (2012). Characterization and expression of cathepsin B 2 in Fasciola gigantica. Experimental Parasitology 132, 2, 249256. https://doi.org/10.1016/j.exppara.2012.07.011CrossRefGoogle ScholarPubMed
Charlier, J, Vercruysse, J, Morgan, E, van Dijk, J, Williams, DJ (2014). Recent advances in the diagnosis, impact on production and prediction of Fasciola hepatica in cattle. Parasitology 141, 3, 326335. https://doi.org/10.1017/S0031182013001662Google Scholar
Costa-Junior, LM, Chaudhry, UN, Silva, CR, Sousa, DM, Silva, NC, Cutrim-Júnior, JAA, Brito, DRB, Sargison, ND (2021). Nemabiome metabarcoding reveals differences between gastrointestinal nematode species infecting co-grazed sheep and goats. Veterinary Parasitology 289, 109339. https://doi.org/10.1016/j.vetpar.2020.109339Google Scholar
Dalton, JP, Neill, SO, Stack, C, Collins, P, Walshe, A, Sekiya, M, Doyle, S, Mulcahy, G, Hoyle, D, Khaznadji, E, Moiré, N, Brennan, G, Mousley, A, Kreshchenko, N, Maule, AG, Donnelly, SM (2003). Fasciola hepatica cathepsin L-like proteases: biology, function, and potential in the development of first generation liver fluke vaccines. International Journal for Parasitology 33, 11, 11731181. https://doi.org/10.1016/s0020-7519(03)00171-1Google Scholar
De Seram, EL, Redman, EM, Wills, FK, de Queiroz, C, Campbell, JR, Waldner, CL, Parker, SE, Avramenko, RW, Gilleard, JS, Uehlinger, FD (2022). Regional heterogeneity and unexpectedly high abundance of Cooperia punctata in beef cattle at a northern latitude revealed by ITS-2 rDNA nemabiome metabarcoding. Parasites & Vectors 15, 17. https://doi.org/10.1186/s13071-021-05137-yGoogle Scholar
Demerdash, ZA, Diab, TM, Aly, IR, Mohamed, SH, Mahmoud, FS, Zoheiry, MK, Mansour, WA, Attia, M, El-Bassiouny, AE (2011). Diagnostic efficacy of monoclonal antibody based sandwich enzyme linked immunosorbent assay (ELISA) for detection of Fasciola gigantica excretory/secretory antigens in both serum and stool. Parasites & Vectors 4, 176180. https://doi.org/10.1186/1756-3305-4-176Google Scholar
Dixit, AK, Yadav, SC, Sharma, RL (2002). 28 kDa Fasciola gigantica cysteine proteinase in the diagnosis of prepatent ovine fasciolosis. Veterinary Parasitology 109, 3–4, 233247. https://doi.org/10.1016/s0304-4017(02)00202-9CrossRefGoogle ScholarPubMed
Dixit, AK, Yadav, SC, Sharma, RL (2004). Experimental bubaline fasciolosis: Kinetics of antibody response using 28 kDa Fasciola gigantica cysteine proteinase as antigen. Tropical Animal Health and Production 36, 4954. https://doi.org/10.1023/B:TROP.0000009526.67899.cfCrossRefGoogle Scholar
Dixit, AK, Dixit, P, Sharma, RL (2008). Immunodiagnostic/protective role of cathepsin L cysteine proteinases secreted by Fasciola species. Veterinary Parasitology 154, 3, 177184. https://doi.org/10.1016/j.vetpar.2008.03.017Google Scholar
Fairweather, I (2005). Triclabendazole: New skills to unravel an old(ish) enigma. Journal of Helminthology 79, 3, 227234. https://doi.org/10.1079/joh2005298CrossRefGoogle ScholarPubMed
Fairweather, I, Brennan, GP, Hanna, REB, Robinson, MW, Skuce, PJ (2020). Drug resistance in liver flukes. International Journal for Parasitology. Drugs and Drug Resistance 12, 3959. https://doi.org/10.1016/j.ijpddr.2019.11.003Google Scholar
Francis, EK, Šlapeta, J (2022). A new diagnostic approach to fast-track and increase the accessibility of gastrointestinal nematode identification from faeces: FECPAKG2 egg nemabiome metabarcoding. International Journal for Parasitology 52, 6, 331342. https://doi.org/10.1016/j.ijpara.2022.01.002Google Scholar
Ghodsian, S, Rouhani, S, Fallahi, S, Seyyedtabaei, SJ, Taghipour, N (2019). Detection of spiked Fasciola hepatica eggs in stool specimens using LAMP technique. Iranian Journal of Parasitology 14, 3, 387393.Google Scholar
Gonzales Santana, B, Dalton, JP, Vasquez Camargo, F, Parkinson, M, Ndao, M (2013).The diagnosis of human fascioliasis by enzyme-linked immunosorbent assay (ELISA) using recombinant cathepsin L protease. PLoS Neglected Tropical Diseases 7, 9, e2414. https://doi.org/10.1371/journal.pntd.0002414Google Scholar
Ikeda, T (1998). Cystatin capture enzyme-linked immunosorbent assay for immunodiagnosis of human paragonimiasis and fascioliasis. The American Journal of Tropical Medicine and Hygiene 59, 2, 286290. https://doi.org/10.4269/ajtmh.1998.59.286CrossRefGoogle ScholarPubMed
Intapan, PM, Tantrawatpan, C, Maleewong, W, Wongkham, S, Wongkham, C, Nakashima, K (2005). Potent epitopes derived from Fasciola gigantica cathepsin L1 in peptide-based immunoassay for the serodiagnosis of human fascioliasis. Diagnostic Microbiology and Infectious Disease 53, 2, 125129. https://doi.org/10.1016/j.diagmicrobio.2005.05.010CrossRefGoogle ScholarPubMed
Jacob, SS, Sengupta, PP, Pavithra, BS, Chandu, AGS, Raina, OK (2023). Development of an enzyme linked immunosorbent assay using recombinant cathepsin B5 antigen for serosurveillance of bovine tropical fasciolosis. Veterinary Parasitology 316, 109901. https://doi.org/10.1016/j.vetpar.2023.109901Google Scholar
Kajugu, PE, Hanna, RE, Edgar, HW, Forster, FI, Malone, FE, Brennan, GP, Fairweather, I (2012). Specificity of a coproantigen ELISA test for fasciolosis: Lack of cross-reactivity with Paramphistomum cervi and Taenia hydatigena. The Veterinary Record 171, 20, 502. https://doi.org/10.1136/vr.10104Google Scholar
Karanikola, SN, Krücken, J, Ramünke, S, de Waal, T, Höglund, J, Charlier, J, Weber, C, Müller, E, Kowalczyk, SJ, Kaba, J, von Samson-Himmelstjerna, G, Demeler, J (2015). Development of a multiplex fluorescence immunological assay for the simultaneous detection of antibodies against Cooperia oncophora, Dictyocaulus viviparus and Fasciola hepatica in cattle. Parasites & Vectors 8, 335340. https://doi.org/10.1186/s13071-015-0924-0Google Scholar
Kelley, JM, Elliott, TP, Beddoe, T, Anderson, G, Skuce, P, Spithill, TW (2016). Current threat of triclabendazole resistance in Fasciola hepatica. Trends in Parasitology 32, 6, 458469. https://doi.org/10.1016/j.pt.2016.03.002CrossRefGoogle ScholarPubMed
Kumar, N, Varghese, A, Solanki, JB (2017). Seroprevalence of Fasciola gigantica infection in bovines using cysteine proteinase dot enzyme-linked immunosorbent assay. Veterinary World 10, 10, 11891193. https://doi.org/10.14202/vetworld.2017.1189-1193CrossRefGoogle ScholarPubMed
Lalrinkima, H, Lalchhandama, C, Jacob, SS, Raina, OK, Lallianchhunga, MC (2021). Fasciolosis in India: An overview. Experimental Parasitology 222, 108066. https://doi.org/10.1016/j.exppara.2021.108066Google Scholar
Law, RH, Smooker, PM, Irving, JA, Piedrafita, D, Ponting, R, Kennedy, NJ, Whisstock, JC, Pike, RN, Spithill, TW (2003). Cloning and expression of the major secreted cathepsin B-like protein from juvenile Fasciola hepatica and analysis of immunogenicity following liver fluke infection. Infection and Immunity 71, 12, 69216932. https://doi.org/10.1128/IAI.71.12.6921-6932.2003Google Scholar
Le, TH, Nguyen, KT, Nguyen, NT, Doan, HT, Le, XT, Hoang, CT, De, NV (2012). Development and evaluation of a single-step duplex PCR for simultaneous detection of Fasciola hepatica and Fasciola gigantica (family fasciolidae, class trematoda, phylum platyhelminthes). Journal of Clinical Microbiology 50, 8, 27202726. https://doi.org/10.1128/JCM.00662-12Google Scholar
Martínez-Pérez, JM, Robles-Pérez, D, Rojo-Vázquez, FA, Martínez-Valladares, M (2012). Comparison of three different techniques to diagnose Fasciola hepatica infection in experimentally and naturally infected sheep. Veterinary Parasitology 190, 1–2, 8086. https://doi.org/10.1016/j.vetpar.2012.06.002CrossRefGoogle ScholarPubMed
Martínez-Sernández, V, Muiño, L, Perteguer, MJ, Gárate, T, Mezo, M, González-Warleta, M, Muro, A, Correia da Costa, JM, Romarís, F, Ubeira, FM (2011). Development and evaluation of a new lateral flow immunoassay for serodiagnosis of human fasciolosis. PLoS Neglected Tropical Diseases 5, 11, e1376. https://doi.org/10.1371/journal.pntd.0001376Google Scholar
Martínez-Valladares, M, Antonio Rojo-Vázquez, F (2016). Loop-mediated isothermal amplification (LAMP) assay for the diagnosis of fasciolosis in sheep and its application under field conditions. Parasites & Vectors 9, 73. https://doi.org/10.1186/s13071-016-1355-2CrossRefGoogle ScholarPubMed
Mas-Coma, S (2005). Epidemiology of fascioliasis in human endemic areas. Journal of Helminthology 79, 3, 207216. https://doi.org/10.1079/joh2005296Google Scholar
Meemon, K, Grams, R, Vichasri-Grams, S, Hofmann, A, Korge, G, Viyanant, V, Upatham, ES, Habe, S, Sobhon, P (2004). Molecular cloning and analysis of stage and tissue-specific expression of cathepsin B encoding genes from Fasciola gigantica. Molecular and Biochemical Parasitology 136, 1, 110. https://doi.org/10.1016/j.molbiopara.2004.02.010Google Scholar
Meshgi, B, Jalousian, F, Fathi, S, Jahani, Z (2018). Design and synthesis of a new peptide derived from Fasciola gigantica cathepsin L1 with potential application in serodiagnosis of fascioliasis. Experimental Parasitology 189, 7686. https://doi.org/10.1016/j.exppara.2018.04.013Google Scholar
Mezo, M, González-Warleta, M, Carro, C, Ubeira, FM (2004). An ultrasensitive capture ELISA for detection of Fasciola hepatica coproantigens in sheep and cattle using a new monoclonal antibody (MM3). Journal of Parasitology 90, 4, 845852. https://doi.org/10.1645/GE-192RGoogle Scholar
Mirzadeh, A, Jafarihaghighi, F, Kazemirad, E, Sabzevar, SS, Tanipour, MH, Ardjmand, M (2021). Recent developments in recombinant proteins for diagnosis of human fascioliasis. Acta Parasitologica 66, 1, 1325. https://doi.org/10.1007/s11686-020-00280-5Google Scholar
Mokhtarian, K, Meamar, AR, Khoshmirsafa, M, Razmjou, E, Masoori, L, Khanmohammadi, M, Akhlaghi, L, Falak, R (2018). Comparative assessment of recombinant and native immunogenic forms of Fasciola hepatica proteins for serodiagnosis of sheep fasciolosis. Parasitology Research 117, 225232. https://doi.org/10.1007/s00436-017-5696-3Google Scholar
Palmer, DG, Lyon, J, Palmer, MA, Forshaw, D (2014). Evaluation of a copro-antigen ELISA to detect Fasciola hepatica infection in sheep, cattle and horses. Australian Veterinary Journal 92, 9, 357361. https://doi.org/10.1111/avj.12224Google Scholar
Raina, OK, Yadav, SC, Sriveny, D, Gupta, SC (2006). Immunodiagnosis of bubaline fasciolosis with Fasciola gigantica cathepsin-L and recombinant cathepsin L 1-D proteases. Acta Tropica 98, 2, 145151. https://doi.org/10.1016/j.actatropica.2006.03.004Google Scholar
Ramachandran, J, Ajjampur, SS, Chandramohan, A, Varghese, GM (2012). Cases of human fascioliasis in India: Tip of the iceberg. Journal of Postgraduate Medicine 58, 2, 150152. https://doi.org/10.4103/0022-3859.97180Google ScholarPubMed
Robinson, MW, Menon, R, Donnelly, SM, Dalton, JP, Ranganathan, S (2009). An integrated transcriptomics and proteomics analysis of the secretome of the helminth pathogen Fasciola hepatica: Proteins associated with invasion and infection of the mammalian host. Molecular & Celluar Proteomics 8, 8, 18911907. https://doi.org/10.1074/mcp.M900045-MCP200Google Scholar
Robles-Pérez, D, Martínez-Pérez, JM, Rojo-Vázquez, FA, Martínez-Valladares, M (2013). The diagnosis of fasciolosis in feces of sheep by means of a PCR and its application in the detection of anthelmintic resistance in sheep flocks naturally infected. Veterinary Parasitology 197, 1–2, 277282. https://doi.org/10.1016/j.vetpar.2013.05.006CrossRefGoogle ScholarPubMed
Rojas-Caraballo, J, López-Abán, J, Pérez del Villar, L, Vizcaíno, C, Vicente, B, Fernández-Soto, P, del Olmo, E, Patarroyo, MA, Muro, A (2014). In vitro and in vivo studies for assessing the immune response and protection-inducing ability conferred by Fasciola hepatica-derived synthetic peptides containing B-and T-cell epitopes. PLoS One 9, 8, e105323. https://doi.org/10.1371/journal.pone.0105323CrossRefGoogle ScholarPubMed
Rokni, MB, Massoud, J, Hanilo, A (2003). Comparison of adult somatic and cysteine proteinase antigens of Fasciola gigantica in enzyme linked immunosorbent assay for serodiagnosis of human fasciolosis. Acta Tropica 88, 1, 6975. https://doi.org/10.1016/s0001-706x(03)00175-xCrossRefGoogle ScholarPubMed
Sargison, N, Chambers, A, Chaudhry, U, Costa Júnior, L, Doyle, SR, Ehimiyein, A, Evans, M, Jennings, A, Kelly, R, Sargison, F, Sinclair, M, Zahid, O (2022). Faecal egg counts and nemabiome metabarcoding highlight the genomic complexity of equine cyathostomin communities and provide insight into their dynamics in a Scottish native pony herd. International Journal for Parasitology 52, 12, 763774. https://doi.org/10.1016/j.ijpara.2022.08.002Google Scholar
Sethadavit, M, Meemon, K, Jardim, A, Spithill, TW, Sobhon, P (2009). Identification, expression and immunolocalization of cathepsin B 3, a stage-specific antigen expressed by juvenile Fasciola gigantica. Acta Tropica 112, 2, 164173. https://doi.org/10.1016/j.actatropica.2009.07.016CrossRefGoogle Scholar
Shi, H, Li, M, Huang, X, Yao, C, Chen, X, Du, A, Yang, Y (2020). Development of SYBR Green real-time PCR for diagnosis of fasciolosis in sheep. Veterinary Parasitology 283, 109193. https://doi.org/10.1016/j.vetpar.2020.109193Google Scholar
Siricoon, S, Vichasri Grams, S, Lertwongvisarn, K, Abdullohfakeeyah, M, Smooker, PM, Grams, R (2015). Fasciola gigantica cathepsin B5 is an acidic endo- and exopeptidase of the immature and mature parasite. Biochimie 119, 615. https://doi.org/10.1016/j.biochi.2015.10.005CrossRefGoogle ScholarPubMed
Spithill, TW, Smooker, PM, Sexton, JL, Bozas, E, Morrison, CA, Creaney, J, Parsons, JC (1999). Development of vaccines against Fasciola hepatica. InDalton, JP (ed), Fasciolosis. CABI Publishing, Wallingford, United Kingdom. pp 377410.Google Scholar
Sriveny, D, Raina, OK, Yadav, SC, Chandra, D, Jayraw, AK, Singh, M, Velusamy, R, Singh, BP (2006). Cathepsin L cysteine proteinase in the diagnosis of bovine Fasciola gigantica infection. Veterinary Parasitology 135, 1, 2531. https://doi.org/10.1016/j.vetpar.2005.10.016CrossRefGoogle ScholarPubMed
Tantrawatpan, C, Maleewong, W, Wongkham, C, Wongkham, S, Intapan, PM, Nakashima, K (2005). Serodiagnosis of human fascioliasis by a cystatin capture enzyme-linked immunosorbent assay with recombinant Fasciola gigantica cathepsin L antigen. The American Journal of Tropical Medicine and Hygiene 72, 1, 8286.Google Scholar
Tran, NTD, Ton Nu, PA, Intuyod, K, Dao, LTK, Pinlaor, P, Nawa, Y, Choowongkomon, K, Geadkaew-Krenc, A, Kosa, N, Grams, R, Pinlaor, S (2019). Evaluation of a commercial enzyme-linked immunosorbent assay kit and in-house Fasciola gigantica cysteine proteinases-based enzyme-linked immunosorbent assays for diagnosis of human fascioliasis. The American Journal of Tropical Medicine and Hygiene 100, 3, 591598. https://doi.org/10.4269/ajtmh.18-0833CrossRefGoogle ScholarPubMed
Tran, DM, Phung, HTT (2020). Detecting Fasciola hepatica and Fasciola gigantica micro-RNAs with loop-mediated isothermal amplification (LAMP). Journal of Parasitic Diseases 44, 2, 364373. https://doi.org/10.1007/s12639-019-01164-wGoogle Scholar
Tran, VT, Porcher, R, Pane, I, Ravaud, P (2022). Course of post COVID-19 disease symptoms over time in the ComPaRe long COVID prospective e-cohort. Nat. Commun. 13, 1812. https://doi.org/10.1038/s41467-022-29513-zGoogle Scholar
Varghese, A, Raina, OK, Nagar, G, Garg, R, Banerjee, PS, Maharana, BR, Kollannur, JD (2012). Development of cathepsin-L cysteine proteinase based Dot-enzyme-linked immunosorbent assay for the diagnosis of Fasciola gigantica infection in buffaloes. Veterinary Parasitology 183, 3–4, 382385. https://doi.org/10.1016/j.vetpar.2011.07.032Google Scholar
Webb, C, Cabada, M (2018). Recent developments in the epidemiology, diagnosis, and treatment of Fasciola infection. Current Opinion in Infectious Diseases 31, 5, 409414. https://doi.org/10.1097/QCO.0000000000000482CrossRefGoogle ScholarPubMed
World Health Organization (WHO) (2018). Foodborne trematode infections. Fascioliasis, diagnosis, treatment and control strategy. Available at https://www.who.int/health-topics/foodbornetrematode-infections#tab=tab_3 (accessed 02 November 2023).Google Scholar