Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T09:47:35.087Z Has data issue: false hasContentIssue false

Adding corn meal into mixed elephant grass–butterfly pea legume silages improves nutritive value and dry matter recovery

Published online by Cambridge University Press:  08 June 2022

E. R. Costa
Affiliation:
Department of Animal Science, Federal Rural University of Pernambuco (UFRPE), Recife, Pernambuco, Brazil
A. C. L. Mello
Affiliation:
Department of Animal Science, Federal Rural University of Pernambuco (UFRPE), Recife, Pernambuco, Brazil
A. Guim
Affiliation:
Department of Animal Science, Federal Rural University of Pernambuco (UFRPE), Recife, Pernambuco, Brazil
S. B. M. Costa
Affiliation:
Department of Animal Science, Federal Rural University of Pernambuco (UFRPE), Recife, Pernambuco, Brazil
B. S. Abreu
Affiliation:
Department of Animal Science, Federal Rural University of Pernambuco (UFRPE), Recife, Pernambuco, Brazil
P. H. F. Silva
Affiliation:
Department of Animal Science, Federal Rural University of Pernambuco (UFRPE), Recife, Pernambuco, Brazil
V. J. Silva*
Affiliation:
Department of Animal Science, Federal Rural University of Pernambuco (UFRPE), Recife, Pernambuco, Brazil
D. E. Simões Neto
Affiliation:
Carpina Sugar Cane Experimental Station/UFRPE, Carpina, Pernambuco, Brazil
*
Author for correspondence: V. J. Silva, E-mail: valdson.silva@ufrpe.br

Abstract

The objective of this study was to describe and explain the effect of adding corn meal (CM) on losses, fermentation characteristics and nutritional value of silages from two elephant grass [Cenchrus purpureus (Schumach.) Morrone] genotypes (Taiwan A-146 2.37 and IRI-381) mixed with butterfly pea (Clitoria ternatea L.) legume. The forage was harvested at 75 days of regrowth from elephant grass plots intercropped with butterfly pea legume and ensiled with or without CM at 5% of dry matter (DM) content. Greater gas losses (12 g/kg) and pH (4.2) were observed in the Taiwan A-146 2.37 + butterfly pea silages. The greatest crude protein content was observed in the ‘Taiwan A-146 2.37’ + butterfly pea silage added with CM (116 g/kg). Silages with additive and those containing IRI-381 had a greater acid detergent fibre content (367 and 366 g/kg, respectively). CM increased the silage DM (221 g/kg), remaining water-soluble carbohydrates contents (26 g/kg) and in vitro digestibility of DM. The aerobic stability was maintained until 45 h after opening the silos. All silages presented a good fermentative profile and were not affected by the relatively large proportion of butterfly pea (>34%) in the ensiled mass as indicated by the reduced contents of butyric acid and ammonia nitrogen. CM reduces total losses, increases DM recovery and improves the nutritional value of silages from mixed elephant grass–butterfly pea legume.

Type
Crops and Soils Research Paper
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abreu, MLC, Vieira, RAM, Rocha, NS, Araujo, RP, Glória, LS, Fernandes, AM, Lacerda, PD and Gesualdi Júnior, A (2014) Clitoria ternatea L. as a potential high quality forage legume. Asian-Australasian Journal of Animal Sciences 27, 169178.CrossRefGoogle ScholarPubMed
Alvares, CA, Stape, JL, Sentelhas, PC, Gonçalves, JLM and Sparovek, G (2013) Köppen's climate classification map for Brazil. Meteorologische Zeitschrift 22, 711728.CrossRefGoogle Scholar
Andrade, IVO, Pires, AJV, Carvalho, GGP, Veloso, CM and Bonomo, P (2010) Losses, fermentation characteristics and nutritional value of elephant grass silage containing agricultural waste. Revista Brasileira de Zootecnia 39, 25782588.CrossRefGoogle Scholar
Andrade, AP, Quadros, DG, Bezerra, ARG, Almeida, JAR, Silva, PHS and Araújo, JAM (2012) Qualitative aspects of elephant grass silage with corn meal and soybean hulls. Semina: Ciências Agrárias 33, 12091218.Google Scholar
APAC, (2020) Agência Pernambucana de Águas e Clima. Histórico de Chuvas. Avaliable at https://www.apac.pe.gov.br/ (Accessed 28 November 2021)Google Scholar
Association of Official Analytical Chemists – International (2006) Official Methods of Analysis, 18th Edn. Gaithersburg: AOAC.Google Scholar
Bernardes, TF, Daniel, JLP, Adesogan, AT, McAllister, TA, Drouin, P, Nussio, LG, Bélanger, G and Cai, Y (2018) Silage review: unique challenges of silages made in hot and cold regions. Journal of Dairy Science 101, 40014019.CrossRefGoogle ScholarPubMed
Bezerra, HFC, Santos, EM, Oliveira, JS, Carvalho, GGP, Pinho, RMA, Silva, TC, Cassuce, MR and Zanine, AM (2019) Fermentation characteristics and chemical composition of elephant grass silage with ground maize and fermented juice of epiphytic lactic acid bacteria. South African Journal of Animal Science 49, 522533.CrossRefGoogle Scholar
Bezerra Neto, E and Barreto, LP (2011) Análises químicas e bioquímicas em plantas. Recife: UFRPE, Editora Universitária da UFRPE, p. 267.Google Scholar
Boddey, RM, Casagrande, DR, Homem, BG and Alves, BJ (2020) Forage legumes in grass pastures in tropical Brazil and likely impacts on greenhouse gas emissions: a review. Grass and Forage Science 75, 357371.CrossRefGoogle Scholar
Bolsen, KK, Lin, C, Brent, CR, Feyerherm, AM, Urban, JE and Aimutis, WRE (1992) Effect the silage additives on the microbial succession and fermentation process of alfalfa and maize silages. Journal of Dairy Science 11, 30663083.CrossRefGoogle Scholar
Borreani, G, Tabacco, E, Schmidt, RJ, Holmes, BJ and Muck, RE (2018) Silage review: factors affecting dry matter and quality losses in silages. Journal of Dairy Science 101, 39523979.CrossRefGoogle ScholarPubMed
Castro-Montoya, JM, Goetz, K and Dickhoefer, U (2020) In vitro fermentation characteristics of tropical legumes and grasses of good and poor nutritional quality and the degradability of their neutral detergent fibre. Animal Production Science 61, 645654.CrossRefGoogle Scholar
Cavalcanti, FJA, Lima Júnior, MA and Lima, J (2008) Recomendações de adubação para o Estado de Pernambuco: 2° aproximação. Recife: Instituto Agronômico de Pernambuco.Google Scholar
Costa, LA, Costa, LA, Araújo, MJ, Edvan, RL, Bezerra, LR, Sousa, AR, Viana, FJC and Dias-Silva, TP (2020) Chemical composition, fermentative characteristics, and in situ ruminal degradability of elephant grass silage containing Parkia platycephala pod meal and urea. Tropical Animal Health and Production 52, 34813492.CrossRefGoogle ScholarPubMed
Detmann, E, Souza, MA, Valadares Filho, SC, Queiroz, AD, Berchielli, TT, Saliba, EOS, Cabral, LS, Pina, DS, Ladeira, MM and Azevedo, JA (2012) Métodos para análise de alimentos – Instituto Nacional de Ciência e Tecnologia de Ciência Animal. Visconde do Rio Branco: Suprema.Google Scholar
Ferreira, DJ, Lana, RP, Zanine, AM, Santos, EM, Veloso, CM and Ribeiro, GA (2013) Silage fermentation and chemical composition of elephant grass inoculated with rumen strains of Streptococcus bovis. Animal Feed Science and Technology 183, 2228.CrossRefGoogle Scholar
Furtado, RN, Carneiro, MSS, Coutinho, DN, Cândido, MJD and Silva, EB (2019) Fermentative losses and chemical composition of elephant grass silage added with castor bean hull. Revista Ciência Agronômica 50, 140147.CrossRefGoogle Scholar
Guim A, AP, Iturrino-Schocken, RP, Franco, GL, Ruggieri, AC and Malheiros, EB (2002) Aerobic stability of wilted grass silages (Pennisetum purpureum, Schum.) treated with microbial inoculant. Revista Brasileira de Zootecnia 31, 21762185.CrossRefGoogle Scholar
Gusmão, JO, Danes, MAC, Casagrande, DR and Bernardes, TF (2018) Total mixed ration silage containing elephant grass for small-scale dairy farms. Grass and Forage Science 73, 717726.CrossRefGoogle Scholar
Heinritz, SN, Siriwan, DM, Avila, P and Hoedtke, S (2012) The effect of inoculant and sucrose addition on the silage quality of tropical forage legumes with varying ensilability. Animal Feed Science and Technology 174, 201210.CrossRefGoogle Scholar
Holden, LA (1999) Comparison of methods of in vitro dry matter digestibility for ten feeds. Journal of Dairy Science 82, 17911794.CrossRefGoogle ScholarPubMed
Jobim, CC, Nussio, LG, Reis, RA and Schmidt, P (2007) Avanços metodológicos na avaliação da qualidade da forragem conservada. Revista Brasileira de Zootecnia 36, 101119.CrossRefGoogle Scholar
Kung Junior, L and Ranjit, NK (2001) The effect of Lactobacillus buchneri and other additives on the fermentation and aerobic stability of barley silage. Journal of Dairy Science 5, 11491155.CrossRefGoogle Scholar
Kung Junior, L, Robinson, JR, Ranjit, NK, Chen, JH, Golt, CM and Pesek, JD (2000) Microbial populations, fermentation end-products, and aerobic stability of maize silage treated with ammonia or a propionic acid-based preservative. Journal of Dairy Science 83, 14791486.CrossRefGoogle Scholar
Kung Junior, L, Shaver, RD, Grant, RJ and Schmidt, RJ (2018) Silage review: interpretation of chemical, microbial, and organoleptic components of silages. Journal of Dairy Science 101, 40204033.CrossRefGoogle Scholar
Lemos, MF, Andrade, AP, Quadros, DG, Silva, PHF, Santos, CO, Souza, CFB, Silva, MAV, Medeiros, AS and Oliveira Neto, PM (2020) Nutritional value, fermentation losses and aerobic stability of elephant grass (Pennisetum purpureum Schum.) silage treated with exogenous fibrolytic enzymes. Acta Scientiarum Animal Sciences 42, e48272.CrossRefGoogle Scholar
Lemos, MF, Mello, ACL, Guim, A, Cunha, MV, Silva, PHF, Atroch, TMA, Oliveira Neto, PM, Medeiros, AS and Clemente, JVF (2021) Grass size and butterfly pea inclusion modify the nutritional value of elephant grass silage. Pesquisa Agropecuária Brasileira 56, e02409.CrossRefGoogle Scholar
Liu, Q, Dong, Z and Shao, T (2018) Effect of additives on fatty acid profile of high moisture alfalfa silage during ensiling and after exposure to air. Animal Feed Science and Technology 236, 2938.CrossRefGoogle Scholar
Lopes, FCF, Morenz, MJF, Lédo, FJS, Carneiro, JC, Paciullo, DSC, Andrade, PJM and Moraes, CT (2021) Chemical composition and fatty acid profile of BRS Capiaçu ensiled at different regrowth ages. Semina: Ciências Agrárias 42, 19812004.Google Scholar
Mannetje, LT and Jones, RM (2000) Grassland vegetation and its measurement. In Mannetje, LT and Jones, RM (eds), Field and Laboratory Methods for Grassland and Animal Production Research. Wallingford: CAB International.CrossRefGoogle Scholar
McDonald, P (1981) The Biochemistry of Silage. (Ed.). New York: John Wiley and Sons, p. 226.Google Scholar
McDonald, P (1982) Silage fermentation. Trends in Biochemical Sciences 7, 164166.CrossRefGoogle Scholar
Mendieta-Araica, B, Spörndly, E, Reyes-Sánchez, N, Norell, L and Spörndly, R (2009) Silage quality when Moringa oleifera is ensiled in mixtures with elephant grass, sugar cane and molasses. Grass and Forage Science 64, 364373.CrossRefGoogle Scholar
Monção, FP, Costa, MAMS, Rigueira, JPS, Sales, ECJ, Leal, DB, Silva, MFP, Gomes, VM, Chamone, JMA, Alves, DD, Carvalho, CCS, Murta, JEJ and Rocha Júnior, VR (2020) Productivity and nutritional value of BRS capiaçu grass (Pennisetum purpureum) managed at four regrowth ages in a semiarid region. Tropical Animal Health and Production 52, 235241.CrossRefGoogle Scholar
Monteiro, IJG, Abreu, JG, Cabral, LS, Ribeiro, MD and Reis, RHP (2011) Elephant grass silage with added alternative products. Acta Scientiarum Animal Sciences 33, 347352.Google Scholar
Muck, RE (2010) Silage microbiology and its control through additives. Revista Brasileira de Zootecnia 39, 183191.CrossRefGoogle Scholar
Muck, RE, Nadeau, EMG, McAllister, TA, Contreras-Govea, FE, Santos, MC and Kung Junior, L (2018) Silage review: recent advances and future uses of silage additives. Journal of Dairy Science 101, 39804000.CrossRefGoogle ScholarPubMed
Musco, N, Koura, IB, Tudisco, R, Awadjihè, G, Adjolohoun, S, Cutrignelli, MI, Mollica, MP, Houinato, M, Infascelli, F and Calabrò, S (2016) Nutritional characteristics of forage grown in south of Beninollica, Maria Pina Houinato, Marcel Infascelli, Federico Calabrò, Seren. Asian-Australasian Journal of Animal Sciences 29, 5161.CrossRefGoogle Scholar
Pereira, FDS, Menezes, DR, Araújo, EJB, Rodrigues, RTS, Andreo, N, Mattos, CW, Quadros, CP, Costa, CF, Wagner, R and Vendruscolo, RG (2020) Diets containing cunhã (Clitoria ternatea L.) hay and forage cactus (Opuntia sp.) meal on production and meat quality of Boer crossbred goat. Tropical Animal Health and Production 52, 27072713.Google Scholar
Playne, MJ and McDonald, P (1966) The buffering constituents of herbage and of silage. Journal of the Science of Food and Agriculture 17, 264268.CrossRefGoogle Scholar
Rabelo, CHS, Lara, EC, Basso, FC, Härter, CJ and Reis, RA (2018) Growth performance of finishing feedlot lambs fed maize silage inoculated with Bacillus subtilis and lactic acid bacteria. The Journal of Agricultural Science 156, 19.CrossRefGoogle Scholar
Ribas, WFG, Monção, FP, Rocha Júnior, VR, Maranhão, CMA, Ferreira, HC, Santos, AS, Gomes, VM and Rigueira, JPS (2021) Effect of wilting time and enzymatic-bacterial inoculant on the fermentative profile, aerobic stability, and nutritional value of BRS capiaçu grass silage. Revista Brasileira de Zootecnia 50, e20200207.CrossRefGoogle Scholar
Ribeiro, KG, Souza, IA, Rigueira, JPS, Cezário, AS, Valadares Filho, SC and Pereira, OG (2020) Campo Grande stylo and elephant grass mixed silages treated with microbial inoculant. Semina: Ciências Agrárias 41, 17291738.Google Scholar
Rigueira, JPS, Monção, FP, Sales, ECJ, Reis, ST, Brant, LMS, Chamone, JMA, Rocha Júnior, V and Pires, DAA (2018) Perfil fermentativo e valor nutricional da silagem de capim-elefante com diferentes níveis de glicerina bruta. Semina: Ciências Agrárias 39, 833844.Google Scholar
Sanchês, SSC, Araújo, RA, Rodrigues, RC, Costa, CS, Santos, FNS, Silva, IR, Jesus, APR and Lima, NM (2018) Quantitative anatomy and in situ ruminal degradation parameters of elephant grass under different defoliation frequencies. Revista Brasileira de Saúde e Produção Animal 19, 166177.CrossRefGoogle Scholar
Santos, RJC, Lira, MA, Guim, A, Santos, MVF, Dubeux Junior, JCB and Mello, ACL (2013) Elephant grass clones for silage production. Scientia Agrícola 70, 611.CrossRefGoogle Scholar
Santos, KC, Magalhães, ALR, Silva, DKA, Araujo, GGL, Fagundes, GM, Ybarra, NG and Abdalla, AL (2017) Nutritional potential of forage species found in Brazilian semiarid region. Livestock Science 195, 118124.CrossRefGoogle Scholar
Santos, APM, Santos, EM, Oliveira, JS, Ribeiro, OL, Perazzo, AF, Pinho, RMA, Macêdo, AJS and Pereira, GA (2018 a) Effects of urea addition on the fermentation of sorghum (Sorghum bicolour) silage. African Journal of Range & Forage Science 35, 5562.CrossRefGoogle Scholar
Santos, HG, Jacomine, PKT, Anjos, LHC, Oliveira, VA, Lumbreras, JF, Coelho, MR, Almeida, JA, Araújo Filho, JC, Oliveira, JB and Cunha, TJF (2018 b) Sistema Brasileiro de Classificação de Solos, 18th Edn. Brasília, DF: Empresa Brasileira de Pesquisa Agropecuária.Google Scholar
Santos, FNS, Santos, EM, Oliveira, JS, Medeiros, GR, Zanine, AM, Araújo, GGL, Perazzo, AF, Lemos, MLP, Pereira, DM, Cruz, GFL, Paulino, RS and Oliveira, CJB (2020) Fermentation profile, microbial populations, taxonomic diversity and aerobic stability of total mixed ration silages based on Cactus and Gliricidia. The Journal of Agricultural Science 158, 110.CrossRefGoogle Scholar
Silva, DJ and Queiroz, AS (2002) Analise de alimentos: Métodos químicos e biológicos, 3rd Edn. Viçosa: UFV, p. 235.Google Scholar
Silva, VJ, Dubeux Junior, JCB, Teixeira, VI, Santos, MVF, Lira, MA and Mello, ACL (2010) Características morfológicas e produtivas de leguminosas forrageiras tropicais submetidas a duas frequências de corte. Revista Brasileira de Zootecnia 39, 97102.CrossRefGoogle Scholar
Silva, ARP, Dias, FJ, Rufino, JPF, Tanaka, ES and Lopes, MM (2020) Effect of using inoculant on elephant grass silage with additives. Acta Scientiarum Animal Sciences 42, e50533.CrossRefGoogle Scholar
Silva, PHF, Sales, TB, Lemos, MF, Silva, MC, Ribeiro, REP, Santos, MVF, Mello, ACL and Cunha, MV (2021) Tall and short-sized elephant grass genotypes: morphophysiological aspects cut-and-carry, and grazing management. Ciência Rural 51, e20200848.CrossRefGoogle Scholar
Tran, TMT, Nguyen, MT, Nguyen, VH and Nishino, N (2017) Effects of wilting and lactic acid bacteria inoculation on fermentation and microbial community of elephant grass silage produced in Vietnam. Grassland Science 64, 151155.CrossRefGoogle Scholar
Valadares Filho, SC, Silva, LFC, Gionbelli, MP, Rotta, PP, Marcondes, MI, Chizzotti, ML and Prados, LF (2016) Exigências nutricionais de zebuínos puros e cruzado - BR-Corte. Viçosa: Universidade Federal de Viçosa.CrossRefGoogle Scholar
Van Soest, PJ (1994) Nutritional Ecology of the Ruminant, 2nd Edn. Ithaca, NY/London: Cornell University Press, p. 476.CrossRefGoogle Scholar
Van Soest, PJ, Robertson, JB and Lewis, BA (1991) Methods for dietary fibre, neutral detergent fibre, and nonstarch polyssacarides in relation to animal nutrition. Journal of Dairy Science 74, 35833597.CrossRefGoogle ScholarPubMed
Wilkinson, JM and Davies, DR (2013) The aerobic stability of silage: key findings and recent developments. Grass and Forage Science 68, 119.CrossRefGoogle Scholar
Zanine, AM, Santos, EM, Dórea, JRR, Dantas, PAS, Silva, TC and Pereira, OG (2010) Evaluation of elephant grass silage with the addition of cassava scrapings. Revista Brasileira de Zootecnia 39, 26112616.CrossRefGoogle Scholar