Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-24T00:52:56.469Z Has data issue: false hasContentIssue false

Analysing soil and canopy factors affecting optimum nitrogen fertilization rates of oilseed rape (Brassica napus)

Published online by Cambridge University Press:  12 November 2008

J. HENKE
Affiliation:
Institute of Crop Science and Plant Breeding, Christian-Albrechts-University, Hermann-Rodewald-Str. 9, D-24118 Kiel, Germany
K. SIELING*
Affiliation:
Institute of Crop Science and Plant Breeding, Christian-Albrechts-University, Hermann-Rodewald-Str. 9, D-24118 Kiel, Germany
W. SAUERMANN
Affiliation:
Landwirtschaftskammer Schleswig-Holstein, Am Kamp 9, D-24783 Osterrönfeld, Germany
H. KAGE
Affiliation:
Institute of Crop Science and Plant Breeding, Christian-Albrechts-University, Hermann-Rodewald-Str. 9, D-24118 Kiel, Germany
*
To whom all correspondence should be addressed. Email: sieling@pflanzenbau.uni-kiel.de

Summary

Implementation of the EU Nitrate Directive in Germany will result in nitrogen (N) balance surpluses being restricted to 60 kg N/ha averaged over 3 years, starting in 2009. With N surpluses of more than 100 kg N/ha, winter oilseed rape (OSR) is a main contributor to N balance surpluses in OSR-based crop rotations in northern Germany. The exact calculation of N fertilization rates therefore becomes increasingly important in order to meet the target of less than 60 kg N/ha N balance average surplus over 3 years at a farm level. Currently, soil mineral nitrogen (SMN) at the beginning of spring growth is commonly used as an indicator for calculation of N fertilization rates in spring. However, amounts of SMN at the beginning of spring growth under OSR are usually low and canopy N is only taken into account to a very limited extent. This might lead to N fertilization rates exceeding the optimum N fertilization rate (Nopt). In the present study, the effects of SMN in spring and of canopy N in autumn and spring on Nopt were investigated. Multi-site field trials producing different crop canopies, as a result of two sowing dates and two autumn N fertilization levels, with five spring N fertilization levels (0–280 kg N/ha) were carried out in 2005/06 and 2006/07.

Nopt in spring was estimated by quadratic response functions using the combine-harvested seed yield data from the spring N fertilization treatments. Regression analyses revealed no relationship between Nopt and SMN at the beginning of spring growth or canopy N at the beginning of spring growth. In contrast, a significant negative correlation between Nopt and canopy N at the end of autumn growth was found. Based on the results of the present study, it is sensible to take autumn canopy N into account when calculating N fertilization rates in spring. If canopy N in autumn is high (>50 kg N/ha), as a consequence, N fertilization rates should be reduced.

Type
Crops and Soils
Copyright
Copyright © 2008 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Beaudoin, N., Saad, J. K., van Laethem, C., Machet, J. M., Maucorps, J. & Mary, B. (2005). Nitrate leaching in intensive agriculture in Northern France: effect of farming practices, soils and crop rotations. Agriculture, Ecosystems and Environment 111, 292310.CrossRefGoogle Scholar
Bilsborrow, P. E., Evans, E. J. & Zhao, F. J. (1993). The influence of spring nitrogen on yield, yield components and glucosinolate content of autumn-sown oilseed rape (Brassica napus). Journal of Agricultural Science, Cambridge 120, 219224.CrossRefGoogle Scholar
Cerrato, M. E. & Blackmer, A. M. (1990). Comparison of models for describing corn yield response to nitrogen fertilizer. Agronomy Journal 82, 138143.CrossRefGoogle Scholar
Colwell, J. D. (1994). Estimating Fertilizer Requirements: A Quantitative Approach. Wallingford, UK: CAB International.Google Scholar
Colnenne, C., Meynard, J. M., Reau, R., Justes, E. & Merrien, A. (1998). Determination of a critical nitrogen dilution curve for winter oilseed rape. Annals of Botany 81, 311317.CrossRefGoogle Scholar
Dejoux, J.-F., Meynard, J.-M. & Reau, R. (1999). Rapeseed new crop management with very early sowing in order to reduce N-leaching and N-fertilization. In New Horizons for an Old Crop: Proceedings of the 10th International Rapeseed Congress, GCIRC: CD-ROM Canberra, Australia: The Regional Institute. Available online at http://www.regional.org.au/au/gcirc/2/343.htm#P0_0 (verified 11/09/08).Google Scholar
Dejoux, J.-F., Recous, S., Meynard, J.-M., Trinsoutrot, I. & Leterme, P. (2000). The fate of nitrogen from winter-frozen rapeseed leaves: mineralization, fluxes to the environment and uptake by rapeseed crop in spring. Plant and Soil 218, 257272.CrossRefGoogle Scholar
Dejoux, J.-F., Meynard, J.-M., Reau, R., Roche, R. & Saulas, P. (2003). Evaluation of environmentally-friendly crop management systems based on very early sowing dates for winter oilseed rape in France. Agronomie 23, 725736.CrossRefGoogle Scholar
Gabrielle, B., Denoroy, P., Gosse, G., Justes, E. & Andersen, M. N. (1998). A model of leaf area development and senescence for winter oilseed rape. Field Crops Research 57, 209222.CrossRefGoogle Scholar
Henke, J. (2008). Entwicklung und Bewertung von Strategien zur Verbesserung der Stickstoffeffizienz im Winterrapsanbau. Schriftenreihe des Instituts für Pflanzenbau und Pflanzenzüchtung der Agrarwissenschaftlichen Fakultät des CAU Kiel, Bd. 54. PhD Thesis, University of Kiel.Google Scholar
Henke, J., Breustedt, G., Sieling, K. & Kage, H. (2007). Impact of uncertainty on the optimum nitrogen fertilization rate and agronomic, ecological and economic factors in an oilseed rape based crop rotation. Journal of Agricultural Science, Cambridge 145, 455468.CrossRefGoogle Scholar
MAFF (Ministry of Agriculture, Fisheries and Food) (2000). Fertiliser Recommendations for Agricultural and Horticultural Crops (RB209). London, UK: The Stationery Office.Google Scholar
Makowski, D., Maltas, A., Morison, M. & Reau, R. (2005). Calculating N fertilizer doses for oil-seed rape using plant and soil data. Agronomy for Sustainable Development 25, 159161.CrossRefGoogle Scholar
Mendham, N. J., Shipway, P. A. & Scott, R. K. (1981). The effects of delayed sowing and weather on growth, development and yield of winter oil-seed rape (Brassica napus L.). Journal of Agricultural Science, Cambridge 96, 389416.CrossRefGoogle Scholar
Rathke, G. W., Behrens, T. & Diepenbrock, W. (2006). Integrated nitrogen management strategies to improve seed yield, oil content and nitrogen efficiency of winter oilseed rape (Brassica napus L.): a review. Agriculture, Ecosystems and Environment 117, 80108.CrossRefGoogle Scholar
Reau, R., Wagner, D. & Palleau, J. P. (1994). End of winter diagnosis: winter rapeseed (Brassica napus) and nitrogen fertilization. In Proceedings of the Third Congress of the European Society for Agronomy (Eds Borin, M. & Sattin, M.), pp. 220221. Podova: European Society for Agronomy.Google Scholar
SAS Institute Inc. (1989). SAS/STAT® User's Guide, Version 6, 4th edn, Vol. 2. Cary, NC: SAS Institute.Google Scholar
Shepherd, M. A. & Sylvester-Bradley, R. (1996). Effect of nitrogen fertilizer applied to winter oilseed rape (Brassica napus) on soil mineral nitrogen after harvest and on the response of a succeeding crop of winter wheat to nitrogen fertilizer. Journal of Agricultural Science, Cambridge 126, 6374.CrossRefGoogle Scholar
Sieling, K., Günther-Borstel, O., Teebken, T. & Hanus, H. (1999). Soil mineral N and N net mineralization during autumn and winter under an oilseed rape – winter wheat – winter barley rotation in different crop management systems. Journal of Agricultural Science, Cambridge 132, 127137.CrossRefGoogle Scholar
Sieling, K., Schröder, H. & Hanus, H. (1998). Mineral and slurry nitrogen effects on yield, N uptake and apparent N-use efficiency of oilseed rape (Brassica napus L.). Journal of Agricultural Science, Cambridge 130, 165172.CrossRefGoogle Scholar
Sieling, K. (2000). Untersuchungen zu den Auswirkungen unterschiedlicher Produktionssysteme auf einige Parameter des N-Haushaltes von Boden und Pflanze. Habilitationsschrift. Schriftenreihe des Instituts für Pflanzenbau und Pflanzenzüchtung der Agrarwissenschaftlichen Fakultät des CAU Kiel, Bd. 16. PhD Thesis, University of Kiel.Google Scholar
Sieling, K. & Kage, H. (2006). N balance as an indicator of N leaching in an oilseed rape – winter wheat – winter barley rotation. Agriculture, Ecosystems and Environment 115, 261269.CrossRefGoogle Scholar
Sieling, K. & Kage, H. (2008). The potential of semi-dwarf oilseed rape genotypes to reduce the risk of N leaching. Journal of Agricultural Science, Cambridge 146, 7784.CrossRefGoogle Scholar
Statistisches Bundesamt (2007). Land- und Forstwirtschaft, Fischerei, Fachserie 3, Reihe 3.1.2. Wiesbaden: Statistisches Bundesamt.Google Scholar
Wehrmann, J. & Scharpf, H. C. (1979). Der Mineralstickstoffgehalt des Bodens als Maßstab für den Stickstoffdüngerbedarf (Nmin-Methode). Plant and Soil 52, 109126.CrossRefGoogle Scholar