Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-24T00:45:28.742Z Has data issue: false hasContentIssue false

Wheat bran supplementation does not affect biochemical markers of bone turnover in young adult women with recommended calcium intake

Published online by Cambridge University Press:  09 March 2007

A. Zittermann*
Affiliation:
Department of Nutrition Science, University of Bonn, Endenicher Allee 11-13, 53115 Bonn, Germany
K. Scheld
Affiliation:
Department of Nutrition Science, University of Bonn, Endenicher Allee 11-13, 53115 Bonn, Germany
A. Danz
Affiliation:
Department of Biology and Education, Health Education, University of Cologne, Cologne, Germany
P. Stehle
Affiliation:
Department of Nutrition Science, University of Bonn, Endenicher Allee 11-13, 53115 Bonn, Germany
*
*Corresponding author: Dr Armin Zittermann, fax +49 228 733217, email a.zittermann@uni-bonn.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We investigated the effect of wheat bran on biochemical indicators of Ca and bone metabolism in nineteen healthy women, aged 25·5 (se 0·9) years. Subjects received six wheat bran biscuits or six white flour biscuits per day for a period of 4 weeks (crossover). Wheat bran consumption increased fibre intake from 17·7 (se 1·3) to 29·6 (se 1·3) g/d (7 d food record) and enhanced P intake from 1225 (se 59) mg/d to 1663 (se 65) mg/d; P < 0·001. Mean daily Ca intake during wheat bran consumption (1110 (se 82) mg/d) significantly (P = 0·008) exceeded Ca ingestion during the white flour period (955 (se 67) mg/d). Wheat bran increased the number of defecations per week from 7·9 (se 0·8) to 12·2 (se 1·4) (P = 0·0018). Urinary Ca excretion over 24 h significantly (P = 0·021) decreased from 473 (se 53) μmol/mmol creatinine (control period) to 339 (se 37) μmol/mmol creatinine (wheat bran period). Serum 25-hydroxyvitamin D, 2 h fasting urinary Ca/creatinine excretions and 24 h urinary P excretion remained constant. No differences in serum levels of carboxy-terminal propeptide of type I procollagen (biomarker of bone formation) or in 2 h fasting urinary hydroxyproline/creatinine excretions (biomarker of bone resorption) were observed at the end of the two cycles of dietary supplementation. We conclude that a high fibre intake of approximately 30 g/d has no significant adverse effects on bone turnover in subjects with Ca intakes above 1000 mg/d and that the reduction in 24 h urinary Ca excretion is most probably the result of an adaptation process, induced by a decrease in net absorbed Ca.

Type
Short communication
Copyright
Copyright © The Nutrition Society 1999

References

Adolf, T, Eberhardt, W, Heseker, H, Hartmann, S, Herwig, A, Matiaske, B, Moch, KJ, Schneider, R & Kübler, W (1995) Lebensmittel- und Naehrstoffaufnahme in der Bunderepublik Deutschland (Food and Nutrient intake in the Federal Republic of Germany). Niederkleen: Wissenschaftlicher Fachverlag Dr. Fleck.Google Scholar
Balasubramanian, R, Johnson, EJ & Marlett, JA (1987) Effect of wheat bran on bowel function and fecal calcium in older adults. Journal of the American College of Nutrition 6, 199208.CrossRefGoogle ScholarPubMed
Batchelor, AJ & Compston, JE (1983) Reduced plasma half-life of radio-labelled 25-hydroxyvitamin D3 in subjects receiving a high-fibre diet. British Journal of Nutrition 49, 213216.CrossRefGoogle ScholarPubMed
Berlin, T & Björkhem, I (1988) Effect of calcium intake on serum levels of 25-hydroxyvitamin D3. European Journal of Clinical Investigation 18, 5255.CrossRefGoogle Scholar
Department of Health (1991) Dietary Values for Food Energy and Nutrients for the United Kingdom, pp. 6171. London: H.M. Stationery Office.Google Scholar
Deutsche Gesellschaft für Ernährung (1991) Empfehlungen für die Naehrstoffzufuhr (Recommendations for Nutrient Intake). Frankfurt: Umschau Verlag.Google Scholar
Draper, HH & Bell, RR (1979) Nutrition and osteoporosis. Advances in Nutrition Research 2, 79106.CrossRefGoogle Scholar
Eriksen, EF, Charles, P, Melsen, F, Mosekilde, L, Ristele, L & Risteli, J (1993) Serum markers of type I collagen formation and degradation in metabolic bone diseases: correlation with bone histomorphometry. Journal of Bone and Mineral Research 8, 127132.CrossRefGoogle ScholarPubMed
Fardellone, P, Brazier, M, Kamel, S, Gueris, J, Graulet, A-M, Lienard, J & Sebert, J-L (1998) Biochemical effects of calcium supplementation in postmenopausal women: influence of dietary calcium intake. American Journal of Clinical Nutrition 67, 12731278.CrossRefGoogle ScholarPubMed
Ford, JA, Colhoun, EM, McIntosh, WB & Dunnigan, MG (1972) Biochemical response of late rickets and osteomalacia to a chupatty-free diet. British Medical Journal 3, 446447.CrossRefGoogle ScholarPubMed
Goldenberg, H & Fernandez, A (1966) Simplified method for the estimation of inorganic phosphorus in body fluids. Clinical Chemistry 12, 871882.CrossRefGoogle ScholarPubMed
Goverde, BC & Veenkamp, FJN (1972) Routine assay of total urinary hydroxyproline based on resin-catalyzed hydrolysis. Clinica Chimica Acta 41, 2940.CrossRefGoogle Scholar
Haack, VS, Chesters, JG, Vollendorf, NW, Story, JA & Marlett, JA (1998) Increasing amounts of dietary fiber provided by foods normalize physiologic response of the large bowel without altering calcium balance or fecal steroid excretion. American Journal of Clinical Nutrition 68, 615622.Google ScholarPubMed
Heynck, H, Krampitz, G & Hesse, A (1995) Binding of calcium by brans under simulated gastrointestinal pH conditions. In vitro study with 45Ca. European Journal of Clinical Nutrition 49, S250S252.Google ScholarPubMed
Hollis, BW, Kamerud, JQ, Selvaag, SR, Lorenz, JD & Napoli, JL (1993) Determination of vitamin D status by radioimmunoassay with an 125I-labeled tracer. Clinical Chemistry 39, 529533.CrossRefGoogle ScholarPubMed
Holmes, RP & Kummerow, FA (1983) The relationship of adequate and excessive intake of vitamin D to health and disease. Journal of the American College of Nutrition 2, 173199.CrossRefGoogle ScholarPubMed
Horowitz, M, Need, AG, Morris, HA, Wishart, J & Nordin, BEC (1988) Biochemical effects of calcium supplementation in postmenopausal osteoporosis. European Journal of Clinical Nutrition 42, 775778.Google ScholarPubMed
Knox, TA, Kassarjian, Z, Dawson-Hughes, B, Golner, BB, Dallal, GE, Arora, S & Russell, RM (1991) Calcium absorption in elderly subjects on high- and low-fiber diets: effect of gastric acidity. American Journal of Clinical Nutrition 53, 14801486.CrossRefGoogle ScholarPubMed
McIntyre, A, Gibson, PR & Young, GP (1993) Butyrate production from dietary fiber and protection against large bowel cancer in a rat model. Gut 34, 386391.CrossRefGoogle ScholarPubMed
Matkovics, V & Heaney, RP (1992) Calcium balance during human growth: evidence for threshold behaviour. American Journal of Clinical Nutrition 55, 992996.CrossRefGoogle Scholar
Nordin, BEC, Horsman, A & Aaron, J (1976) Diagnostic procedures. In Calcium, Phosphate and Magnesium Metabolism, pp. 469524 [Nordin, BEC, editor]. Edinburgh: Churchill Livingstone.Google Scholar
O'Brien, KO, Allen, LH, Quatromoni, P, Siu-Caldera, ML, Vieira, NE, Perez, A, Holick, MF & Yergey, AL (1993) High fiber diets slow bone turnover in young men but have no effect on efficiency of intestinal calcium absorption. Journal of Nutrition 123, 21222128.Google ScholarPubMed
Paschen, K (1970) Eine neue Mikromethode zum spezifischen Nachweis von Natrium, Kalium, Calcium und Magnesium in einer einzigen Serumverduennung (A micro-method for the specific measurement of sodium, potassium, calcium and magnesium in a single serum dilution). Deutsche Medizinische Wochenschrift 95, 25702573.CrossRefGoogle Scholar
Rick, W (1977) Clinical Chemistry and Microscopy. Berlin: Springer.Google Scholar
Souci, SW, Fachmann, W & Kraut, H (1994) Food Composition and Nutrition Tables. Stuttgart: Medpharm GmbH Scientific Publishers.Google Scholar
Spiller, G, Story, JA, Wong, LG, Nunes, JD, Alton, M, Petro, MS, Furumoto, EJ, Whittam, JH & Scala, J (1986) Effect of increasing levels of hard wheat fiber on fecal weight, minerals, and steroids and gastrointestinal transit time in healthy young women. Journal of Nutrition 116, 778785.CrossRefGoogle ScholarPubMed
Vieth, R, Fraser, D & Kooh, SW (1987) Low dietary calcium reduces 25-hydroxycholecalciferol in plasma of rats. Journal of Nutrition 117, 914918.CrossRefGoogle ScholarPubMed
Weaver, CM, Heaney, RP, Martin, BR & Fitzsimmons, ML (1991) Human calcium absorption from whole wheat products. Journal of Nutrition 121, 17691775.CrossRefGoogle ScholarPubMed
Weaver, CM, Heaney, RP, Teegarden, D & Hinders, SM (1996) Wheat bran abolishes the inverse relationship between calcium load size and absorption fraction in women. Journal of Nutrition 126, 303307.CrossRefGoogle ScholarPubMed
Wisker, E, Hudtwalcker, G & Feldheim, W (1987) Untersuchungen zum Kalzium- und Phosphorstoffwechsel beim Menschen (Studies on human calcium and phosphorus metabolism). Aktuelle Ernährungsmedizin 12, 149153.Google Scholar
Wisker, E, Nagel, R, Tanudjaja, TK & Feldheim, W (1991) Calcium, magnesium, zinc, and iron balances in young women: effects of a low-phytate barley-fiber concentrate. American Journal of Clinical Nutrition 54, 553559.CrossRefGoogle ScholarPubMed
Wisker, E, Peschel, G & Feldheim, W (1988) Pruefung der ernährungsphysiologischen Wirkung eines Ballaststoffkonzentrats aus Gerste (Dietary fibre concentrate from barley: physiological effects in man). Aktuelle Ernährungsmedizin 13, 5256.Google Scholar
Zittermann, A, Scheld, K & Stehle, P (1998) Seasonal variations in vitamin D status and calcium absorption do not influence bone turnover in young women. European Journal of Nutrition 52, 501506.Google Scholar