Hostname: page-component-7c8c6479df-995ml Total loading time: 0 Render date: 2024-03-28T17:15:26.749Z Has data issue: false hasContentIssue false

The effects of date seed (Phoenix dactylifera) supplementation on exercise-induced oxidative stress and aerobic and anaerobic performance following high-intensity interval training sessions: a randomised, double-blind, placebo-controlled trial

Published online by Cambridge University Press:  14 July 2022

Elham Moslemi
Affiliation:
Student research committee, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
Parvin Dehghan*
Affiliation:
Nutrition Research Center, Department of Biochemistry and Diet Therapy, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
Mostafa Khani
Affiliation:
Faculty of Physical Education and Sport Sciences, University of Tabriz, Tabriz, Iran
Parvin Sarbakhsh
Affiliation:
Department of Statistics and Epidemiology, School of Public Health, Tabriz University of Medical Sciences, Tabriz, Iran
Bahareh Sarmadi
Affiliation:
Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400, Serdang, Selangor, Malaysia
*
*Corresponding author: Parvin Dehghan, email dehghan.nut@gmail.com

Abstract

High-intensity interval training (HIIT) is an efficient method to improve vascular function, maximal oxygen consumption, and muscle mitochondrial capacity. However, acute HIIT overstresses the oxidative system and causes muscle soreness and damage. The aim of the present study was to investigate the effects of date seeds on exercise-induced oxidative stress and aerobic and anaerobic performance following HIIT sessions. Thirty-six physically active men and women aged 18–35 years were assigned to take 26 g/d of date seed powder (DSP, n 18) or wheat bran powder (placebo, n 18) before and after HIIT workouts for 14 d. Total antioxidant capacity (TAC), oxidative stress index (OSI), total oxidant status (TOS), superoxide dismutase (SOD), glutathione peroxidase (GPx), uric acid, malondialdehyde (MDA), and 8-iso-PGF2α were determined at baseline, at the end of the intervention, and 24-h post-intervention. We used the Cooper and running-based anaerobic sprint test to assess aerobic and anaerobic performance at the study’s beginning and end. Independent-samples Student’s t tests, ANCOVA and repeated-measures ANOVA were used to compare the quantitative variables. Positive changes were observed in TAC, TOS, OSI, GPx, MDA and visual analogue scale after intervention and at 24-h post-exercise (P < 0·05). Likewise, peak power and fatigue index were significantly improved in DSP in comparison with the placebo group. Levels of SOD, uric acid, 8-iso-PGF2α, VO2 max and average power were not changed after training. Our results showed that date seed supplementation in active participants performing HIIT bouts ameliorated oxidative stress and improved performance parameters.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Zaid, A & de Wet, F (2002) Date Palm Cultivation. https://www.fao.org/3/y4360e/y4360e06.htm Google Scholar
Bouaziz, MA, Abbes, F, Mokni, A, et al. (2017) The addition effect of Tunisian date seed fibers on the quality of chocolate spreads. J Texture Stud 48, 143150.CrossRefGoogle ScholarPubMed
Alem, C, Ennassir, J, Benlyas, M, et al. (2017) Phytochemical compositions and antioxidant capacity of three date (Phoenix dactylifera L.) seeds varieties grown in the South East Morocco. J Saudi Soc Agric Sci 16, 350357.Google Scholar
Hilary, S, Tomás-Barberán, FA, Martinez-Blazquez, JA, et al. (2020) Polyphenol characterisation of Phoenix dactylifera L.(date) seeds using HPLC-mass spectrometry and its bioaccessibility using simulated in-vitro digestion/Caco-2 culture model. Food Chem 311, 125969.CrossRefGoogle Scholar
Djaoudene, O, López, V, Cásedas, G, et al. (2019) Phoenix dactylifera L. seeds: a by-product as a source of bioactive compounds with antioxidant and enzyme inhibitory properties. Food Funct 10, 49534965.CrossRefGoogle Scholar
Isworo, A (2020) Anti-inflammatory activity of date palm seed by down regulating interleukin-1β, TGF-β, cyclooxygenase-1 and-2: a study among middle age women. Saudi Pharm J 28, 10141018.Google Scholar
Ahmed, F, Ahmed, AM & Darwish, HH (2010) Hypoglycemic effect of an extract from date seeds on diabetic rats. Saudi Med J 31, 747751.Google Scholar
Jubayer, F, Kayshar, S & Rahaman, M (2020) Effects of ajwa date seed powder on serum lipids in humans: a randomized, double-blind, placebo-controlled clinical trial. J Herb Med 24, 100409.CrossRefGoogle Scholar
Dehghanian, F, Kalantaripour, TP, Esmaeilpour, K, et al. (2017) Date seed extract ameliorates β-amyloid-induced impairments in hippocampus of male rats. Biom Pharmacother 89, 221226.CrossRefGoogle ScholarPubMed
Platat, C, Hilary, S, Tomas-Barberan, FA, et al. (2019) Urine metabolites and antioxidant effect after oral intake of date (phoenix dactylifera L.) seeds-based products (powder, bread and extract) by human. Nutrients 11, 2489.CrossRefGoogle ScholarPubMed
Kessler, HS, Sisson, SB & Short, KR (2012) The potential for high-intensity interval training to reduce cardiometabolic disease risk. Sports med 42, 489509.CrossRefGoogle ScholarPubMed
Mallol, M, Norton, L, Bentley, DJ, et al. (2020) Physiological response differences between run and cycle high intensity interval training program in recreational middle age female runners. J Sports Sci Med 19, 508.Google ScholarPubMed
Maillard, F, Pereira, B & Boisseau, N (2018) Effect of high-intensity interval training on total, abdominal and visceral fat mass: a meta-analysis. Sports Med 48, 269288.CrossRefGoogle ScholarPubMed
Khalafi, M, Ravasi, AA, Malandish, A, et al. (2022) The impact of high-intensity interval training on postprandial glucose and insulin: a systematic review and meta-analysis. Diabetes Res Clin Pract, 109815.CrossRefGoogle ScholarPubMed
Powers, SK, Nelson, WB & Hudson, MB (2011) Exercise-induced oxidative stress in humans: cause and consequences. Free Radic Biol Med 51, 942950.CrossRefGoogle ScholarPubMed
Sies, H, Berndt, C & Jones, DP (2017) Oxidative stress. Annu Rev Biochem 86, 715748.CrossRefGoogle ScholarPubMed
Farhangi, MA, Dehghan, P & Namazi, N (2020) Prebiotic supplementation modulates advanced glycation end-products (AGEs), soluble receptor for AGEs (sRAGE), and cardiometabolic risk factors through improving metabolic endotoxemia: a randomized-controlled clinical trial. Eur J Nutr 59, 30093021.CrossRefGoogle ScholarPubMed
Vollaard, NB, Shearman, JP & Cooper, CE (2005) Exercise-induced oxidative stress. Sports Med 35, 10451062.CrossRefGoogle ScholarPubMed
Gomez-Cabrera, MC, Salvador-Pascual, A, Cabo, H, et al. (2015) Redox modulation of mitochondriogenesis in exercise. Does antioxidant supplementation blunt the benefits of exercise training? Free radic biol med 86, 3746.CrossRefGoogle ScholarPubMed
Vidal, K, Robinson, N & Ives, SJ (2017) Exercise performance and physiological responses: the potential role of redox imbalance. Physiol rep 5, e13225.CrossRefGoogle ScholarPubMed
Gholami, F, Antonio, J, Evans, C, et al. (2021) Tomato powder is more effective than lycopene to alleviate exercise-induced lipid peroxidation in well-trained male athletes: randomized, double-blinded cross-over study. J Int Soc Sports Nutr 18, 17.CrossRefGoogle ScholarPubMed
Koivisto, AE, Olsen, T, Paur, I, et al. (2019) Effects of antioxidant-rich foods on altitude-induced oxidative stress and inflammation in elite endurance athletes: a randomized controlled trial. PLoS One 14, e0217895.CrossRefGoogle ScholarPubMed
McLeay, Y, Barnes, MJ, Mundel, T, et al. (2012) Effect of New Zealand blueberry consumption on recovery from eccentric exercise-induced muscle damage. J Int Soc Sports Nutr 9, 112.CrossRefGoogle ScholarPubMed
Martin-Rincon, M, Gelabert-Rebato, M, Galvan-Alvarez, V, et al. (2020) Supplementation with a mango leaf extract (Zynamite®) in combination with quercetin attenuates muscle damage and pain and accelerates recovery after strenuous damaging exercise. Nutrients 12, 614.CrossRefGoogle ScholarPubMed
Saryono, S, Rahmawati, E, Proverawati, A, et al. (2017) Effect of antioxidant status and oxidative stress products in pre-menopausal women after treatment with date seed powder (Phoenix dactylifera L.): a study on women in Indonesia. Pak J Nutr 16, 477481.Google Scholar
Meqbaali, AA & Saif, FT (2016) The Potential Antioxidant and Anti-Inflammatory Effects of Date Seed Powder in Rats. https://scholarworks.uaeu.ac.ae/all_theses/473/ (accessed November 2016).Google Scholar
Saryono, S & Proverawati, A (2019) Hepatoprotective effect of date seeds works through the antioxidant mechanism: a systematic review. Ann Trop Med Public Health 22, 301309.CrossRefGoogle Scholar
Saryono, S, Sumeru, A, Proverawati, A, et al. (2018) Decreasing carbon tetrachloride toxicity using date-seed (Phoenix dactylifera L.) steeping in rats. Toxicol Environ Health Sci 10, 139145.CrossRefGoogle Scholar
Hasan, M & Mohieldein, A (2016) In vivo evaluation of anti diabetic, hypolipidemic, antioxidative activities of Saudi date seed extract on streptozotocin induced diabetic rats. J Clinical Diagn: JCDR 10, FF06.Google ScholarPubMed
Saafi, EB, Louedi, M, Elfeki, A, et al. (2011) Protective effect of date palm fruit extract (Phoenix dactylifera L.) on dimethoate induced-oxidative stress in rat liver. Exp Toxicol Pathol 63, 433441.CrossRefGoogle Scholar
Abdelaziz, DH & Ali, SA (2014) The protective effect of Phoenix dactylifera L. seeds against CCl4-induced hepatotoxicity in rats. J Ethnopharmacol 155, 736743.CrossRefGoogle ScholarPubMed
Shephard, RJ (1988) PAR-Q, Canadian Home Fitness Test and exercise screening alternatives. Sports med 5, 185195.CrossRefGoogle ScholarPubMed
Schulz, KF, Altman, DG & Moher, D (2010) CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials. Trials 11, 18.CrossRefGoogle ScholarPubMed
Roy, BA (2013) High-intensity interval training: efficient, effective, and a fun way to exercise: brought to you by the American college of sports medicine www. acsm. org. ACSM’s Health Fit J 17, 3.Google Scholar
Moslemi, E, Dehghan, P & Khani, M (2022) The effect of date seed (Phoenix dactylifera) supplementation on inflammation, oxidative stress biomarkers, and performance in active people: a blinded randomized controlled trial protocol. Contemp Clin Trials Commun 28, 100951.CrossRefGoogle ScholarPubMed
Bogdanis, G, Stavrinou, P, Fatouros, I, et al. (2013) Short-term high-intensity interval exercise training attenuates oxidative stress responses and improves antioxidant status in healthy humans. Food Chem Toxicol 61, 171177.CrossRefGoogle ScholarPubMed
Goldberg, L, Elliot, DL & Kuehl, KS (1988) Assessment of exercise intensity formulas by use of ventilatory threshold. Chest 94, 9598.CrossRefGoogle ScholarPubMed
Yang, YJ, Kim, MK, Hwang, SH, et al. (2010) Relative validities of 3-day food records and the food frequency questionnaire. Nutr Res Pract 4, 142148.CrossRefGoogle ScholarPubMed
Organization WH (2006) The World Health Report 2006: Working Together for Health. Geneva: World Health Organization.Google Scholar
Ács, P, Veress, R, Rocha, P, et al. (2021) Criterion validity and reliability of the International Physical Activity Questionnaire–Hungarian short form against the RM42 accelerometer. BMC Public Health 21, 110.CrossRefGoogle ScholarPubMed
Moghaddam, MB, Aghdam, FB, Jafarabadi, MA, et al. (2012) The Iranian Version of International Physical Activity Questionnaire (IPAQ) in Iran: content and construct validity, factor structure, internal consistency and stability. World Appl Sci J 18, 10731080.Google Scholar
Ueda, T, Nabetani, T & Teramoto, K (2006) Differential perceived exertion measured using a new visual analogue scale during pedaling and running. J Physiol Anthropol 25, 171177.CrossRefGoogle ScholarPubMed
Yirün, MC, Kübranur, Ü, Şen, NA, et al. (2016) Evaluation of oxidative stress in bipolar disorder in terms of total oxidant status, total antioxidant status, and oxidative stress index. Neuropsychiatry 53, 194.Google Scholar
Jentzsch, AM, Bachmann, H, Fürst, P, et al. (1996) Improved analysis of malondialdehyde in human body fluids. Free Radic Biol Med 20, 251256.CrossRefGoogle ScholarPubMed
Bandyopadhyay, A (2014) Validity of Cooper’s 12-min run test for estimation of maximum oxygen uptake in female university students. Indian J Physiol Pharmacol 58, 184186.Google ScholarPubMed
Adamczyk, J (2011) The estimation of the RAST test usefulness in monitoring the anaerobic capacity of sprinters in athletics. Pol J Sport Tourism 18, 214218.CrossRefGoogle Scholar
Williams, S (1984) Official Methods of Analysis. Arlington, VA: Association of Official Analytical Chemists, Inc.Google Scholar
Singleton, VL & Rossi, JA (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16, 144158.Google Scholar
Chang, C-C, Yang, M-H, Wen, H-M, et al. (2002) Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J Food Drug Anal 10, 3.Google Scholar
Clarkson, PM & Thompson, HS (2000) Antioxidants: what role do they play in physical activity and health? Am J Clin Nutr 72, 637S646S.CrossRefGoogle ScholarPubMed
Kawamura, T & Muraoka, I (2018) Exercise-induced oxidative stress and the effects of antioxidant intake from a physiological viewpoint. Antioxidants 7, 119.CrossRefGoogle ScholarPubMed
Slattery, K, Bentley, D & Coutts, AJ (2015) The role of oxidative, inflammatory and neuroendocrinological systems during exercise stress in athletes: implications of antioxidant supplementation on physiological adaptation during intensified physical training. Sports Med 45, 453471.CrossRefGoogle ScholarPubMed
Ighodaro, O & Akinloye, O (2018) First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): their fundamental role in the entire antioxidant defence grid. Alexandria J Med 54, 287293.CrossRefGoogle Scholar
Regoli, F & Winston, GW (1999) Quantification of total oxidant scavenging capacity of antioxidants for peroxynitrite, peroxyl radicals, and hydroxyl radicals. Toxicol Appl Pharmacol 156, 96105.CrossRefGoogle ScholarPubMed
Habib, HM & Ibrahim, WH (2011) Effect of date seeds on oxidative damage and antioxidant status in vivo . J Sci Food Agric 91, 16741679.CrossRefGoogle ScholarPubMed
Rahmawati, E, Hapsari, E & Hidayat, A (2016) Antioxidant enzyme status on rat after date seeds (Phoenix dactylifera) steeping treatment. Int J Res Med Sci 4, 18931896.Google Scholar
Leopoldini, M, Russo, N & Toscano, M (2011) The molecular basis of working mechanism of natural polyphenolic antioxidants. Food Chem 125, 288306.CrossRefGoogle Scholar
Ramyaa, P & Padma, VV (2014) Quercetin modulates OTA-induced oxidative stress and redox signalling in HepG2 cells—up regulation of Nrf2 expression and down regulation of NF-κB and COX-2. Biochim Biophys Acta Gen Subj 1840, 681692.CrossRefGoogle ScholarPubMed
Meng, T, Xiao, D, Muhammed, A, et al. (2021) Anti-inflammatory action and mechanisms of resveratrol. Molecules 26, 229.CrossRefGoogle ScholarPubMed
Urquiaga, I & Leighton, F (2000) Plant polyphenol antioxidants and oxidative stress. Biol Res 33, 5564.CrossRefGoogle ScholarPubMed
Wu, M, Luo, Q, Nie, R, et al. (2021) Potential implications of polyphenols on aging considering oxidative stress, inflammation, autophagy, and gut microbiota. Crit Rev Food Sci Nutr 61, 21752193.CrossRefGoogle ScholarPubMed
Ji, LL (1993) Antioxidant enzyme response to exercise and aging. Med Sci Sports Exerc 25, 225231.CrossRefGoogle ScholarPubMed
Close, GL, Ashton, T, Cable, T, et al. (2006) Ascorbic acid supplementation does not attenuate post-exercise muscle soreness following muscle-damaging exercise but may delay the recovery process. Br J Nutr 95, 976981.CrossRefGoogle Scholar
Gomez-Cabrera, MC, Borrás, C, Pallardó, FV, et al. (2005) Decreasing xanthine oxidase-mediated oxidative stress prevents useful cellular adaptations to exercise in rats. J Physiol 567, 113120.CrossRefGoogle ScholarPubMed
Halliwell, B (2006) Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol 141, 312322.CrossRefGoogle ScholarPubMed
Howatson, G & Van Someren, KA (2008) The prevention and treatment of exercise-induced muscle damage. Sports Med 38, 483503.CrossRefGoogle ScholarPubMed
Ortega, DR, López, AM, Amaya, HM, et al. (2021) Tart cherry and pomegranate supplementations enhance recovery from exercise-induced muscle damage: a systematic review. Biol Sport 38, 97.CrossRefGoogle ScholarPubMed
Blake, H, Buckley, J, Coates, A, et al. (2021) Polyphenol consumption and endurance exercise performance: a systematic review and meta-analysis of randomised controlled trials. J Sci Med Sport 24, S42S43.CrossRefGoogle Scholar
Morgan, PT, Wollman, PM, Jackman, SR, et al. (2018) Flavanol-rich cacao mucilage juice enhances recovery of power but not strength from intensive exercise in healthy, young men. Sports 6, 159.CrossRefGoogle Scholar
Roberts, JD, Roberts, MG, Tarpey, MD, et al. (2015) The effect of a decaffeinated green tea extract formula on fat oxidation, body composition and exercise performance. J Int Soc Sports Nutr 12, 19.CrossRefGoogle ScholarPubMed
Jówko, E, Długołęcka, B, Makaruk, B, et al. (2015) The effect of green tea extract supplementation on exercise-induced oxidative stress parameters in male sprinters. Eur J Nutr 54, 783791.CrossRefGoogle ScholarPubMed
da Silva, W, Machado, ÁS, Souza, MA, et al. (2018) Effect of green tea extract supplementation on exercise-induced delayed onset muscle soreness and muscular damage. Physiol behav 194, 7782.CrossRefGoogle ScholarPubMed
Schwarz, NA, Blahnik, ZJ, Prahadeeswaran, S, et al. (2018) (–)-Epicatechin supplementation inhibits aerobic adaptations to cycling exercise in humans. Front nutr 5, 132.CrossRefGoogle ScholarPubMed
Peake, J, Nosaka, KK & Suzuki, K (2005) Characterization of Inflammatory Responses to Eccentric Exercise in Humans. https://ro.ecu.edu.au/ecuworks/2980/ (accessed November 2005).Google Scholar
Proske, U & Allen, TJ (2005) Damage to skeletal muscle from eccentric exercise. Exerc Sport Sci Rev 33, 98104.CrossRefGoogle ScholarPubMed
Alexander, SP (2006) Flavonoids as antagonists at A1 adenosine receptors. Phytother Res: Int J Devoted Pharmacol Toxicol Eval Nat Product Derivative 20, 10091012.CrossRefGoogle ScholarPubMed
Ruiz-Iglesias, P, Gorgori-González, A, Massot-Cladera, M, et al. (2021) Does flavonoid consumption improve exercise performance? Is it related to changes in the immune system and inflammatory biomarkers? A systematic review of clinical studies since 2005. Nutrients 13, 1132.CrossRefGoogle ScholarPubMed