Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-01T18:51:14.937Z Has data issue: false hasContentIssue false

6U CubeSat design for Earth observation with 6▪5m GSD, five spectral bands and 14Mbps downlink

Published online by Cambridge University Press:  03 February 2016

S. R. Tsitas
Affiliation:
s.r.tsitas@alumni2008.cranfield.ac.uk
J. Kingston
Affiliation:
j.kingston@cranfield.ac.uk, Cranfield Space Research Centre, Aerospace Engineering Department School of Engineering, Cranfield University, Cranfield, UK

Abstract

The design of a 6U CubeSat including spacecraft systems and imaging payload is described for an Earth observation mission. From a Sun synchronous orbit at an altitude of 600km the design enables imaging with a 6.5m GSD, an optical MTF (on axis) of >59% at half Nyquist and >35% at Nyquist, a 26km swath, 12 bit digitisation and SNR of 120-200:one in five spectral bands; blue, green, red, red edge and near infrared. Data can be downlinked at the rate of 14 Mbps to a 3.7m S band ground station. This design allows an 8kg CubeSat to perform Earth observation missions equivalent to those of current 50-150kg microsatellites, with a corresponding reduction in cost.

Type
Research Article
Copyright
Copyright © Royal Aeronautical Society 2010 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nason, I., Creedon, M. and Johansen, N.. CUBESAT P-Pod Deployer Requirements, 2002. <http://cubesat.atl.calpoly.edu/media/Documents/Launch%20Providers/ppod_mk1_icd.pdf>>Google Scholar
3. Crook, M.. NPS CubeSat Launcher Design, Process and Requirements, 2009. <http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA501503& Location=U2&doc=GetTRDoc.pdf>>Google Scholar
4. Curiel, A., Boland, L., Cooksley, J., Bekhti, M., Stephens, P., Sun, W. and Sweeting, M.. First results from the disaster monitoring constellation (DMC), Acta Astronautica, 2005, 56, pp 261271.Google Scholar
5. Teston, F., Bernaerts, D. and Gantois, K.. Proba, an ESA technology demonstration mission, results after 3 years in orbit, 2004, Proceedings of the 4S Symposium: Small Satellites, Systems and Services, ESA SP-571, 2004, pp 7.1–7.10.Google Scholar
6. Wertz, J.R., Spacecraft Attitude Determination and Control, 1978, D. Reidel Publishing Company, Holland.Google Scholar
7. Johnson, N.L. and Stansbery, E.G.. The new NASA orbital debris mitigation procedural requirements and standards, Acta Astronautica, 2009, 10.1016/j.actaastro.2009.07.009.Google Scholar
8. Tethers Unlimited, End-of-mission deorbit module for nanosatellites. <http://www.tethers.com/SpecSheets/nanoTerminator.pdf>>Google Scholar
9. Surrey Satellite Technology Ltd, Wide swath DMC MSI datasheet. <http://www.sstl.co.uk/assets/Downloads/DMC%20MSI.pdf>>Google Scholar
12. ESA Sentinel-2 Team, GMES Sentinel-2 Mission Requirements Document, EOP-SM/1163/MR-dr, 2007. <http://esamultimedia. esa.int/docs/GMES/GMES_Sentinel2_MRD_issue_2.0_update.pdf>>Google Scholar
13. Questar Corporation, Questar Field Model Telescope Specification Sheet. <http://www.questarcorporation.com/QuestarPDF/FieldModel.pdf>>Google Scholar
14. Company 7, Questar 50th Anniversary 3-1/2 Telescope. <http://www.company7.com/questar/telescopes/que50thanniversary.html>>Google Scholar
15. Questar Corporation, 2009, personal communication.Google Scholar
16. Perkins, J.. Questar Corporation, 2009, personal communication.Google Scholar
17. Verdone, P.. A Telescope Suitable for Rocket Borne Instrumentation, 1966. <http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/1967000 9591_1967009591.pdf>>Google Scholar
19. Allan, G. and Flood, C.. High-speed, high-resolution, color CCD image sensor, DALSA Inc. <http://www.machinevisiononline.org/public/articles/dalsa5.pdf>>Google Scholar
22. Tate, C. MESL, 2009, personal communication.Google Scholar
23. Maral, G. and Bousquet, M., Satellite Communications Systems, 2002, Wiley, UK.Google Scholar
24. The Consultative Committee for Space Data Systems, DVB-S2 Coding & Modulation Standard Use For High Data Rate Tm Links, 2007, pp 4–3. <http://cwe.ccsds.org/sls/docs/SLS-CandS/Meeting%20Materials/2007/Spring +Summer_Material/DVB-S2_orange_book_withoutmark(July2007).pdf>>Google Scholar
25. Lee, S.W. and Skulsky, E.D.. Mars Reconnaissance Orbiter design approach for high-resolution surface imaging, 2003, 26th Annual AAS Guidance and Control Breckenridge, CO, USA.Google Scholar
27. Grocott, S.C.O. and Carroll, K.A.. Arc-Second Attitude Control for the NESS Asteroid/Satellite Tracking Microsat, <http://citeseerx.ist. psu.edu/viewdoc/download?doi=10.1.1.133.7848&rep=rep1&type=pdf>>Google Scholar
28. Greenland, S.. Clyde Space, 2009, personal communication.Google Scholar
29. Gupta, B.D., Fiber Optic Sensors: Principles and Applications, 2006, New India Publishing Agency, New Delhi.Google Scholar
31. Ashwin Ushas Corporation, Variable Emittance Electrochromic Material for Spacecraft Thermal Control. <http://www.ashwin-ushas.com/EleHome/SpaceThermal/SpaceThermal/spacethermal.html>>Google Scholar
32. Chandrasekhar, P.. Ashwin Ushas Corporation, 2009, personal communication.Google Scholar
33. CubeSat Design Specification Rev. 12, The CubeSat Program, Cal Poly SLO. <http://cubesat.atl.calpoly.edu/media/CDS_rev12.pdf>>Google Scholar