Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-24T06:00:06.149Z Has data issue: false hasContentIssue false

Holocene morpho-sedimentary evolution of Marambaia Barrier Island (SE Brazil)

Published online by Cambridge University Press:  16 August 2021

Tatiana Pinheiro Dadalto*
Affiliation:
Department of Geology, Fluminense Federal University, Niterói, Brazil Environmental Sciences Training Center, Federal University of Southern Bahia, Porto Seguro, Brazil
Breylla Campos Carvalho
Affiliation:
Department of Geological Oceanography, Rio de Janeiro State University, Rio de Janeiro, Brazil Coordenação de Estruturas Territoriais, Instituto Brasileiro de Geografia e Estatística, Rio de Janeiro, Brazil
Josefa Varela Guerra
Affiliation:
Department of Geological Oceanography, Rio de Janeiro State University, Rio de Janeiro, Brazil
Antonio Tadeu dos Reis
Affiliation:
Department of Geological Oceanography, Rio de Janeiro State University, Rio de Janeiro, Brazil
Cleverson Guizan Silva
Affiliation:
Department of Geology, Fluminense Federal University, Niterói, Brazil
*
*Corresponding author: tpdadalto@ufsb.edu.br

Abstract

Barrier islands are sedimentary bodies susceptible to changes in sediment supply, dominant physical processes, and sea level. The aim of this work was to study the sedimentary processes that established Marambaia Barrier Island (SE Brazil) as an elongated sandy body that created Sepetiba Bay. For this purpose, barrier and back-barrier bay environments were analyzed using high-resolution satellite imagery, geophysical and topographic surveys, surface sediment samples and short cores, and radiocarbon and optically stimulated luminescence (OSL) dating techniques. Seven morpho-sedimentary domains were identified: coastal beach ridges, overland flow features, inter-ridge paleo lagoon, bayside beach ridges, marshlands, dune field and tidal wetlands. The results show that Marambaia Barrier Island evolved throughout the Holocene, first under normal regression conditions during sea-level rise, and then by forced regression as sea level lowered to its present position. Concurrent processes related to longshore drift, onshore transport, reworked barrier deposits, eolian transport, bay circulation, and pedogenesis influenced its morpho-sedimentary evolution. Morphological features such as truncated beach ridges, flying spits, and filled channels attest to the occurrence of alternating periods of erosion and accretion, evincing how the morphology of barrier island systems preserves an important archive of environmental changes.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Almeida, F.O., da Rocha, P.L.F., Carelli, S.C., Plastino, R.H., 2010. Geophysical investigations for modeling sand ridges at Sepetiba Bay, Itaguaí, Estado do Rio de Janeiro, Brazil. Anuário do Instituto de Geociências (UFRJ) 33, 4453.Google Scholar
Alvares, C.A., Stape, J.L., Sentelhas, P.C., Gonçalves, J.L.de M., Sparovek, G., 2013. Köppen's climate classification map for Brazil. Meteorologische Zeitschrift 22, 711728.CrossRefGoogle Scholar
Angulo, R.J., Giannini, P.C.F., Souza, M.C., Lessa, G.C., 2016. Holocene paleo-sea level changes along the coast of Rio de Janeiro, southern Brazil: Comment on Castro et al. (2014). Anais da Academia Brasileira de Ciências 88, 21052111.CrossRefGoogle Scholar
Angulo, R.J., Lessa, G.C., Souza, M.C., 2006. A critical review of mid- to late-Holocene sea-level fluctuations on the eastern Brazilian coastline. Quaternary Science Reviews 25, 486506.CrossRefGoogle Scholar
Barboza, E.G., Dillenburg, S.R., Rosa, M.L.C.C., Tomazelli, L.J., Hesp, P.A., 2009. Ground penetrating radar profiles of two Holocene regressive barriers in Southern Brazil. Journal of Coastal Research 56, 579583.Google Scholar
Blott, S.J., Pye, K., 2001. GRADISTAT: a grain size distribution and statistic package for the analysis of unconsolidated sediments. Earth Surface Processes and Landforms 26, 12371248.CrossRefGoogle Scholar
Borges, H.V., 1990. Dinâmica Sedimentar da Restinga da Marambaia e Baía de Sepetiba. Master's Thesis, Universidade Federal do Rio de Janeiro.Google Scholar
Borges, H.V., 1998. Holocene Geological Evolution of Sepetiba Bay and Marambaia Barrier Island, Brazil. PhD Dissertation, Stoney Brook University (State University of New York).Google Scholar
Borges, H.V., Nittrouer, C.A., 2016. Sediment accumulation in Sepetiba Bay (Brazil) during the Holocene: a reflex of the human influence. Journal of Sedimentary Environments 1, 90106.CrossRefGoogle Scholar
Buynevich, I.V., FitzGerald, D.M., van Heteren, S., 2004. Sedimentary records of intense storms in Holocene barrier sequences, Maine, USA. Marine Geology 210, 135148.CrossRefGoogle Scholar
Caldas, L.H.O., Jr Oliveira, J.G., Medeiros, W.E., Stattegger, K., Vital, H., 2006. Geometry and evolution of Holocene transgressive and regressive barriers on the semi-arid coast of NE Brazil. Geo-Marine Letters 26, 249263.CrossRefGoogle Scholar
Carvalho, B.C.; Dalbosco, A.L.P., and Guerra, J.V., 2020. Shoreline position change and the relationship to annual and interannual meteo-oceanographic conditions in Southeastern Brazil. Estuarine, Coastal and Shelf Science 235, 106582. https://doi.org/10.1016/j.ecss.2020.106582.CrossRefGoogle Scholar
Carvalho, B.C., Guerra, J.V., 2020. Aplicação de modelo de tendência direcional de transporte ao longo de uma ilha-barreira: Restinga da Marambaia (RJ, SE Brasil). Anuário do Instituto de Geociências (UFRJ) 43, 101118.Google Scholar
Carvalho, V.S., 2011. Caracterização e classificação de espodossolos nos estados de Pernambuco e Paraíba. PhD Dissertation. Universidade Federal Rural de Pernambuco.Google Scholar
Castelo, W.F.L., Martins, M.V.A., Martínez-Colón, M., Guerra, J.V., Dadalto, T.P., Terroso, D., Soares, M.F., et al. , 2021. Disentangling natural vs. anthropogenic induced environmental variability during the Holocene: Marambaia Cove, SW sector of the Sepetiba Bay (SE Brazil). Environmental Science and Pollution Research 28, 2261222640. https://doi.org/10.1007/s11356-020-12179-9.CrossRefGoogle Scholar
Catuneanu, O., 2002. Sequence stratigraphy of clastic systems: concepts, merits, and pitfalls. Journal of African Earth Sciences 35, 143.CrossRefGoogle Scholar
Catuneanu, O., 2006. Principles of Sequence Stratigraphy. Elsevier, Amsterdam, 375 pp.Google Scholar
Cooper, J.A.G., Pilkey, O.H., 2004. Longshore drift: trapped in an expected universe. Journal of Sedimentary Research 74, 599606.CrossRefGoogle Scholar
Dereczynski, C.P., Menezes, W.F., 2015. Meteorologia da Bacia de Campos. In: Martins, R.P., Grossmann-Matheson, G.S. (Eds.). Meteorologia e Oceanografia. Elsevier Ltda., Rio de Janeiro, pp. 154.Google Scholar
Dillenburg, S.R., Barboza, E.G., Hesp, P.A., Rosa, M.L.C.C., Angulo, R.J., Souza, M.C., Giannini, P.C.F., Sawakuchi, A.O., 2014. Discussion: “Evidence for a transgressive barrier within a regressive strandplain system: implications for complex response to environmental change” by Hein et al. (2013), Sedimentology 60, 469–502. A transgressive barrier at Pinheira, Southern Brazil around 3 ka? Sedimentology 61, 22052212.CrossRefGoogle Scholar
Dillenburg, S.R., Hesp, P., 2009. Geology and Geomorphology of Holocene Coastal Barriers of Brazil. Springer, New York, 388 pp.CrossRefGoogle Scholar
Dillenburg, S.R., Roy, P.S., Cowell, P.J., Tomazelli, L.J., 2000. Influence of antecedent topography on coastal evolution as tested by the shoreface translation-barrier model (STM). Journal of Coastal Research 16, 7181.Google Scholar
Dougherty, A.J., FitzGerald, D.M., Buynevich, I.V., 2004. Evidence for storm-dominated early progradation of Castle Neck barrier, Massachusetts, USA. Marine Geology 210, 123134.CrossRefGoogle Scholar
Duc, A.W., Tye, R.S., 1987. Evolution and stratigraphy of a regressive barrier/backbarrier complex: Kiawah Island, South Carolina. Sedimentology 34, 237251.CrossRefGoogle Scholar
Folk, R, Ward, W., 1957. Brazos River bar: a study in the significance of grain size parameters. Journal of Sedimentary Research 27, 326.CrossRefGoogle Scholar
Fonseca, S.A.R da., 2013. Circulação e Fluxo de Material Particulado em Suspensão no Principal Canal de Acesso à Baía de Sepetiba. PhD Dissertation, Universidade do Estado do Rio de Janeiro.Google Scholar
Fornari, M., Giannini, P.C.F., Jr.Nascimento, D.R, 2012. Facies associations and controls on the evolution from a coastal bay to a lagoon system, Santa Catarina Coast, Brazil. Marine Geology 323, 5668.CrossRefGoogle Scholar
Friederichs, Y.L., Reis, A.T., Silva, C.G., Toulemonde, B., Maia, R.M.C., Guerra, J.V., 2013. Arquitetura sísmica do sistema fluvio-estuarino da Baía de Sepetiba preservado na estratigrafia rasa da plataforma adjacente, Rio de Janeiro, Brasil. Brazilian Journal of Geology 43, 9981012.CrossRefGoogle Scholar
Giannini, P.C.F., Guedes, C.C.F., Nascimento, D.R. Jr., Tanaka, A.P.B., Angulo, R.J., Assine, M.L., Souza, M.C., 2009. Sedimentology and morphologic evolution of the Ilha Comprida barrier system, Southern São Paulo Coast. In: Dillenburg, S.R., Hesp, P. (Eds.), Geology of the Brazilian Coastal Barriers: Lecture Notes in Earth Sciences. Springer-Verlag, Berlin, pp 177224.10.1007/978-3-540-44771-9_6CrossRefGoogle Scholar
Guedes, C.C.F, Giannini, P.C.F., Sawakuchi, A.O., Dewitt, R., Jr.Nascimento, D.R., Aguiar, V.A.P, Rossi, M.G., 2011. Determination of controls on Holocene barrier progradation through application of OSL dating: the Ilha Comprida Barrier example, Southeastern Brazil. Marine Geology 285, 116.CrossRefGoogle Scholar
Hayes, M.O., FitzGerald, D.M., 2013. Origin, evolution, and classification of tidal inlets. Journal of Coastal Research 69, 1433.CrossRefGoogle Scholar
Hennessy, J.T., Zarillo, G.A., 1987. The interrelation and distinction between flood tidal delta and washover deposits in a transgressive barrier island. Marine Geology 78, 3556.CrossRefGoogle Scholar
Hogg, A.G., Hua, Q., Blackwell, P.G., Niu, M., Buck, C.E., Guilderson, T.P., Heaton, T.J., et al. , 2013. SHCal13 Southern Hemisphere calibration, 0–50,000 years cal BP. Radiocarbon 55, 8891903.CrossRefGoogle Scholar
Hudock, J.W., Flaig, P.P., Wood, L.J., 2014. Washover fans: a modern geomorphologic analysis and proposed classification scheme to improve reservoir models. Journal of Sedimentary Research 84, 854865.10.2110/jsr.2014.64CrossRefGoogle Scholar
Hutchinson, M.F., Gallant, J.C., 2000. Digital elevation models and representation of terrain shape. In: Wilson, D.J., Gallant, J.C. (Eds.). Terrain Analysis: Principles and Applications. John Wiley and Sons, New York, pp. 2950.Google Scholar
Kinsela, M.A., Daleya, M.J.A, Cowell, P.J., 2016. Origins of Holocene coastal strandplains in Southeast Australia: shoreface sand supply driven by disequilibrium morphology. Marine Geology 374, 1430.CrossRefGoogle Scholar
Kjerfve, B., Dias, G.T.M., Filippo, A., Geraldes, M.C., 2021. Oceanographic and environmental characteristics of a coupled coastal bay system: Baía de Ilha Grande-Baía de Sepetiba, Rio de Janeiro, Brazil. Regional Studies in Marine Science 41, 101594.CrossRefGoogle Scholar
Krumbein, WC, Pettijohn, FJ., 1938. Manual of Sedimentary Petrography. Appleton Century Crofts, New York, 549 pp.Google Scholar
Lambeck, K., Rouby, H., Purcell, A., Sun, Y., Sambridge, M., 2014. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proceedings of the National Academy of Sciences (PNAS) 111, 1529715303.CrossRefGoogle ScholarPubMed
Lamego, A. R., 1945. Ciclo evolutivo das lagunas fluminenses. Boletim Geográfico, Rio de Janeiro 60, 14041430.Google Scholar
Leatherman, S.P., 1985. Geomorphic and stratigraphic analysis of Fire Island, New York. Marine Geology 63, 173195.CrossRefGoogle Scholar
Lessa, G.C., Angulo, R.J., Giannini, P.C., Araújo, A.D., 2000. Stratigraphy and Holocene evolution of a regressive barrier in south Brazil. Marine Geology 165, 87108.CrossRefGoogle Scholar
Lima, L.G., Parise, C.K., 2020. Holocene coastal evolution of the transition from transgressive to regressive barrier in southern Brazil. Catena 185, 104263. https://doi.org/10.1016/j.catena.2019.104263.CrossRefGoogle Scholar
Martinez, P., Buurman, P., Lopes-Mazzetto, J.M., Giannini, P.C.F., Schellekens, J., Vidal-Torrado, P., 2018. Geomorphological control on podzolisation—an example from a tropical barrier island. Geomorphology 309, 8697.CrossRefGoogle Scholar
Milne, G.A., Long, A.J., Bassett, S.E., 2005. Modelling Holocene relative sea-level observations from the Caribbean and South America. Quaternary Science Reviews 24, 11831202.CrossRefGoogle Scholar
Muehe, D., Lins-de-Barros, F.M., Bulhões, E.M.R., Klumb-Oliveira, L.A., Pinto, N., Sperle, M., 2018. Rio de Janeiro. In: Muehe, D. (Ed). Erosão e Progradação do Litoral Brasileiro. Ministério do Meio Ambiente, Brasília, pp. 478545.Google Scholar
Murray, A., Wintle, A.G., 2000. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements 32, 5773.CrossRefGoogle Scholar
Neal, A., 2004. Ground-penetrating radar and its use in sedimentology: principles, problems and progress. Earth- Science Reviews 66, 261330.CrossRefGoogle Scholar
Neal, A., Roberts, C.L., 2001. Internal structure of a trough blowout, determined from migrated ground-penetrating radar profiles. Sedimentology 48, 791810.CrossRefGoogle Scholar
Oertel, G.F., 1985. The barrier island system. Marine Geology 63, 118.CrossRefGoogle Scholar
Otvos, E.G., 2020. Coastal barriers—fresh look at origins, nomenclature and classification issues. Geomorphology 355, 107000. https://doi.org/10.1016/j.geomorph.2019.107000.CrossRefGoogle Scholar
Pinto, A.F.S., Martins, M.V.A., Rodrigues, M.A.C., Nogueira, L., Laut, L.L.M., Pereira, E., 2016. Late Holocene evolution of the Northeast intertidal region of Sepetiba Bay, Rio de Janeiro (Brazil). Journal of Sedimentary Environments 1, 113144.CrossRefGoogle Scholar
Ponçano, W.L.,1976. Sedimentação Atual na Baia de Sepetiba, Estado do Rio de Janeiro: Contribuição a Avaliação de um Porto. Master's Thesis, Universidade de São Paulo.Google Scholar
Ponçano, W.L., Fulfaro, V.J., Gimenez, A.F., 1979. Sobre a origem da restinga da Marambaia, RJ. Proceedings of Regional Symposium on Geology 2°, 1979, Rio Claro: Brazilian Geology Society 1, 291–204.Google Scholar
Preusser, F., Degering, D., Fuchs, M., Hilgers, A., Kadereit, A., Klasen, N., Krbetschek, M., Richter, D., Spencer, J.Q.G., 2008. Luminescence dating: basics, methods and applications. Quaternary Science Journal 57, 95149.Google Scholar
Rabineau, M., Berné, S., Aslanian, D., Olivet, J.L., Joseph, P., Guillocheau, F., Bourillet, J.F., Ledrezen, E., Granjeon, D., 2006. Paleo sea levels reconsidered from direct observation of paleoshoreline position during Glacial Maxima (for the last 500,000 yr). Earth and Planetary Science Letters 252, 119137.CrossRefGoogle Scholar
Rampino, M.R., Sanders, J.E., 1980. Holocene transgression in south-central Long Island, New York. Journal of Sedimentary Research 50, 10631079.Google Scholar
Reis, A.T., Amendola, G., Dadalto, T.P., Silva, C.G., Tardin, R.G.C.P., Guerra, J.V., Martins, V., Cardia, R.R., Gorini, C., Rabineau, M., 2020. Architecture and depositional evolution of the latest Pleistocene–Holocene (last ~20ky) sedimentary succession of Sepetiba Bay (RJ). Geociências 39, 695708.CrossRefGoogle Scholar
Reis, A.T, Maia, R.M.C., Silva, C.G., Rabineau, M., Guerra, J.V., Gorini, C., Ayres, A., et al. , 2013. Origin of step-like and lobate seafloor features along the continental shelf off Rio de Janeiro State, Santos basin-Brazil. Geomorphology 203, 2545.CrossRefGoogle Scholar
Riggs, S.R., Cleary, W.J., Snyder, S.W., 1995. Influence of inherited geologic framework on barrier shoreface morphology and dynamics. Marine Geology 126, 213234.CrossRefGoogle Scholar
Roberts, M.L, Steven, R., Beaupré, S.R., Burton, J.R., 2013. A high-throughput, low-cost method for analysis of carbonate samples for 14C. Radiocarbon 55, 585592.CrossRefGoogle Scholar
Rodriguez, A.B., Anderson, J.B., Siringan, F.P., Taviani, M., 2004. Holocene evolution of the east Texas coast and inner continental shelf: along strike variability in coastal retreat rates: Journal of Sedimentary Research 74, 406422.CrossRefGoogle Scholar
Roy, P.S., Zhuang, W.Y., Birch, G.F., Cowell, P.J., Congxiang, L., 1997. Quaternary Geology of the Forster-Tuncurry Coast and Shelf Southeast Australia. Department of Mineral Resources, Geological Survey of New South Wales, 405 pp.Google Scholar
Embrapa (Santos, H.G.dos, Jacomine, P.K.T., Anjos, L.H.C.dos, Oliveira, V.A.de, Oliveira, J.B.de, Coelho, M.R., Lumbreras, J.F., Cunha, T.J.F.), 2006. Sistema Brasileiro de Classificação de Solos. Embrapa Solos, Rio de Janeiro. http://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/338818.Google Scholar
Sauer, D, Sponagel, H, Sommer, M, Giani, L, Jahn, R, Stahr, K., 2007. Podzol: soil of the year 2007. a review on its genesis, occurrence, and functions. Journal of Plant Nutrition and Soil Science 170, 117.CrossRefGoogle Scholar
Sawakuchi, A.O., Kalchgruber, R., Giannini, P.C.F., Jr Nascimento, D.R., Guedes, C.C.F., Umisedo, N., 2008. The development of blowouts and foredunes in the Ilha Comprida barrier (southeastern Brazil): the influence of late Holocene climate changes on coastal Sedimentation. Quaternary Science Reviews 27, 20762090.CrossRefGoogle Scholar
Schwartz, R.K., Birkemeier, W.A., 2004. Sedimentology and morphodynamics of a barrier island shoreface related to engineering concerns, Outer Banks, NC, USA. Marine Geology v. 211, 215255.CrossRefGoogle Scholar
Seminack, C.T., Buynevich, I.V., 2013. Sedimentological and geophysical signatures of a relict tidal inlet complex along a wave-dominated barrier: Assateague Island, Maryland, U.S.A. Journal of Sedimentary Research 83, 132144.CrossRefGoogle Scholar
Siddall, M., Rohling, E.J., Almogi-Labin, R.E.J.A., Hemleben, C., Meischner, D., Schmelzer, I., Smeed, D.A., 2003. Sea-level fluctuations during the last glacial cycle. Nature 423, 853858.10.1038/nature01690CrossRefGoogle ScholarPubMed
Skene, K.I., Piper, D.J.W., Aksu, A.E., Syvitski, J.P.M., 1998. Evaluation of the global oxygen isotope curve as a proxy for Quaternary sea level by modeling of delta progradation. Journal of Sedimentary Research 68, 10771092.CrossRefGoogle Scholar
Sloss, C.R., Jones, B.G., Murray-Wallace, C.V., MacLennen, C.E., 2005. Holocene sea level fluctuations and the sedimentary evolution of a barrier estuary: Lake Illawarra, New South Wales, Australia. Journal of Coastal Research 21, 943959.CrossRefGoogle Scholar
Stuiver, M., Reimer, P.J., 1993. Extended 14C data base and revised CALIB 3.0 14C age calibration. Radiocarbon 35, 215230.CrossRefGoogle Scholar
Stuiver, M., Reimer, P.J., Reimer, R.W., 2016. CALIB Radiocarbon Calibration. Version 7.1. <http://calib.org/calib>. Access date: 06 Dec 2016..+Access+date:+06+Dec+2016.>Google Scholar
Stutz, M.L., Pilkey, O.H., 2011. Open-ocean barrier islands: global influence of climatic, oceanographic, and depositional settings. Journal of Coastal Research 27, 207222.CrossRefGoogle Scholar
Switzer, A.D., Bristow, C.S., Jones, B.G., 2006. Investigation of large-scale washover of a small barrier system on the southeast Australian coast using ground penetrating radar. Sedimentary Geology 183, 145156.CrossRefGoogle Scholar
Tardin, R.G.C.P, Reis, A.T., Silva, C.G., 2016. Detalhamento arquitetural do arcabouço estratigráfico Quaternário da plataforma sul fluminense, Bacia de Santos. Proceedings of VII Simpósio Brasileiro de Geofísica. Resumo Expandido, 2016, p. 16.Google Scholar
Timmons, E.A., Rodriguez, A.B., Mattheus, C.R., Dewitt, R., 2010. Transition of a regressive to a transgressive barrier island due to back-barrier erosion, increased storminess, and low sediment supply: Bogue Banks, North Carolina, USA. Marine Geology 278, 100114.CrossRefGoogle Scholar
van Heteren, S., Fitzgerald, D.M., McKinlay, P.A., Buynevich, I.V., 1998. Radar facies of paraglacial barrier systems: coastal New England, USA. Sedimentology 45, 181200.CrossRefGoogle Scholar
Vila-Concejo, A., Short, A.D., Hughes, M.G., Ranasinghe, R., 2007. Flood-tide delta morphodynamics and management implications, Port Stephens, Australia. Journal of Coastal Research, Special Issue 50, 705709.Google Scholar
Wei, E.C., McGuinness, J.L., 1973. Reciprocal distance squared method: a computer technique for estimating areal precipitation (Report ARS-NC-8). Agricultural Research Service, US Department of Agriculture, North-Centra Region, Illinois, 29 pp.Google Scholar
Wintle, A.G., Murray, A.S., 2006. A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols. Radiation Measurements 41, 369391.CrossRefGoogle Scholar
Zenkovitch, VP., 1959. On the genesis of cuspate spits along lagoon shores. Journal of Geology 67, 269277.CrossRefGoogle Scholar
Supplementary material: File

Dadalto et al. supplementary material

Figure S1

Download Dadalto et al. supplementary material(File)
File 624 KB