Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-24T00:40:34.143Z Has data issue: false hasContentIssue false

Exploiting self-organized criticality in strongly stratified turbulence

Published online by Cambridge University Press:  23 December 2021

Gregory P. Chini*
Affiliation:
Program in Integrated Applied Mathematics, University of New Hampshire, Durham, NH03824, USA Department of Mechanical Engineering, University of New Hampshire, Durham, NH03824, USA
Guillaume Michel
Affiliation:
Institut Jean Le Rond d'Alembert, Sorbonne Université, CNRS, UMR 7190, ParisF-75005, France
Keith Julien
Affiliation:
Department of Applied Mathematics, University of Colorado, Boulder, CO80309, USA
Cesar B. Rocha
Affiliation:
Department of Marine Sciences, University of Connecticut, Storrs, CT06269, USA
Colm-cille P. Caulfield
Affiliation:
BP Institute, University of Cambridge, CambridgeCB3 0EZ, UK Department of Applied Mathematics & Theoretical Physics, University of Cambridge, CambrdgeCB3 0WA, UK
*
Email address for correspondence: greg.chini@unh.edu

Abstract

A multiscale reduced description of turbulent free shear flows in the presence of strong stabilizing density stratification is derived via asymptotic analysis of the Boussinesq equations in the simultaneous limits of small Froude and large Reynolds numbers. The analysis explicitly recognizes the occurrence of dynamics on disparate spatiotemporal scales, yielding simplified partial differential equations governing the coupled evolution of slow large-scale hydrostatic flows and fast small-scale isotropic instabilities and internal waves. The dynamics captured by the coupled reduced equations is illustrated in the context of two-dimensional strongly stratified Kolmogorov flow. A noteworthy feature of the reduced model is that the fluctuations are constrained to satisfy quasilinear (QL) dynamics about the comparably slowly varying large-scale fields. Crucially, this QL reduction is not invoked as an ad hoc closure approximation, but rather is derived in a physically relevant and mathematically consistent distinguished limit. Further analysis of the resulting slow–fast QL system shows how the amplitude of the fast stratified-shear instabilities is slaved to the slowly evolving mean fields to ensure the marginal stability of the latter. Physically, this marginal stability condition appears to be compatible with recent evidence of self-organized criticality in both observations and simulations of stratified turbulence. Algorithmically, the slaving of the fluctuation fields enables numerical simulations to be time-evolved strictly on the slow time scale of the hydrostatic flow. The reduced equations thus provide a solid mathematical foundation for future studies of three-dimensional strongly stratified turbulence in extreme parameter regimes of geophysical relevance and suggest avenues for new sub-grid-scale parametrizations.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ait-Chaalal, F., Schneider, T., Meyer, B. & Marston, B. 2016 Cumulant expansions for atmospheric flows. New J. Phys. 18 (2), 124.CrossRefGoogle Scholar
Augier, P., Billant, P. & Chomaz, J.-M. 2015 Stratified turbulence forced with columnar dipoles: numerical study. J. Fluid Mech. 769, 403443.CrossRefGoogle Scholar
Augier, P., Chomaz, J.-M. & Billant, P. 2012 Spectral analysis of the transition to turbulence from a dipole in stratified fluid. J. Fluid Mech. 713, 86108.CrossRefGoogle Scholar
Balmforth, N.J. & Young, Y.-N. 2002 Stratified Kolmogorov flow. J. Fluid Mech. 450, 131167.CrossRefGoogle Scholar
Balmforth, N.J. & Young, Y.-N. 2005 Stratified Kolmogorov flow. Part 2. J. Fluid Mech. 528, 2342.CrossRefGoogle Scholar
Bartello, P. & Tobias, S.M. 2013 Sensitivity of stratified turbulence to the buoyancy Reynolds number. J. Fluid Mech. 725, 122.CrossRefGoogle Scholar
Beaume, C., Chini, G.P., Julien, K. & Knobloch, E. 2015 Reduced description of exact coherent states in parallel shear flows. Phys. Rev. E 91, 043010.CrossRefGoogle ScholarPubMed
Billant, P. & Chomaz, J.-M. 2001 Self-similarity of strongly stratified inviscid flows. Phys. Fluids 13 (6), 16451651.CrossRefGoogle Scholar
Bois, P.A. 1991 Asymptotic aspects of the Boussinesq approximation for gases and liquids. Geophys. Astrophys. Fluid Dyn. 58, 4555.CrossRefGoogle Scholar
Brethouwer, G., Billant, P., Lindborg, E. & Chomaz, J.-M. 2007 Scaling analysis and simulation of strongly stratified turbulent flows. J. Fluid Mech. 585, 343368.CrossRefGoogle Scholar
de Bruyn Kops, S.M. & Riley, J.J. 2019 The effects of stable stratification on the decay of initially isotropic homogeneous turbulence. J. Fluid Mech. 860, 787821.CrossRefGoogle Scholar
Burns, K.J., Vasil, G.M., Oishi, J.S., Lecoanet, D. & Brown, B.P. 2020 Dedalus: a flexible framework for numerical simulations with spectral methods. Phys. Rev. Res. 2, 023068.CrossRefGoogle Scholar
Caulfield, C.P. 2020 Open questions in turbulent stratified mixing: do we even know what we do not know? Phys. Rev. Fluids 5, 110518.CrossRefGoogle Scholar
Caulfield, C.P. 2021 Layering, instabilities, and mixing in turbulent stratified flows. Annu. Rev. Fluid Mech. 53, 113145.CrossRefGoogle Scholar
Caulfield, C.P. & Peltier, W.R. 2000 The anatomy of the mixing transition in homogeneous and stratified free shear layers. J. Fluid Mech. 413, 147.CrossRefGoogle Scholar
Child, A., Hollerbach, R., Marston, B. & Tobias, S. 2016 Generalised quasilinear approximation of the helical magnetorotational instability. J. Plasma Phys. 82 (03), 905820302.CrossRefGoogle Scholar
Constantinou, N.C., Farrell, B.F. & Ioannou, P.J. 2014 a Emergence and equilibration of jets in beta-plane turbulence: applications of stochastic structural stability theory. J. Atmos. Sci. 71, 18181842.CrossRefGoogle Scholar
Constantinou, N.C., Farrell, B.F. & Ioannou, P.J. 2016 Statistical state dynamics of jet–wave coexistence in barotropic beta-plane turbulence. J. Atmos. Sci. 73 (5), 22292253.CrossRefGoogle Scholar
Constantinou, N.C., Lozano-Durán, A., Nikolaidis, M.-A., Farrell, B.F., Ioannou, P.J. & Jiménez, J. 2014 b Turbulence in the highly restricted dynamics of a closure at second order: comparison with DNS. J. Phys.: Conf. Ser. 506, 012004.Google Scholar
Craik, A.D.D. 1985 Linear wave interactions. In Wave Interactions and Fluid Flows. Cambridge University Press.CrossRefGoogle Scholar
Engquist, B., Li, X., Ren, W. & Vanden-Eijnden, E. 2007 Heterogeneous multiscale methods: a review. Commun. Comput. Phys. 2, 367450.Google Scholar
Falder, M., White, N.J. & Caulfield, C.P. 2016 Seismic imaging of rapid onset of stratified turbulence in the south Atlantic Ocean. J. Phys. Oceanogr. 46 (4), 10231044.CrossRefGoogle Scholar
Farrell, B.F., Gayme, D.F. & Ioannou, P.J. 2017 A statistical state dynamics approach to wall turbulence. Phil. Trans. R. Soc. A 375, 20160081.CrossRefGoogle ScholarPubMed
Farrell, B.F., Ioannou, P.J., Jimenez, J., Constantinou, N.C., Lozano-Duran, A. & Nikolaidis, M.-A. 2016 A statistical state dynamics-based study of the structure and mechanism of large-scale motions in plane Poiseuille flow. J. Fluid Mech. 809, 290315.CrossRefGoogle Scholar
Feraco, F., Marino, R., Pumir, A., Primavera, L., Mininni, P.D., Pouquet, A. & Rosenberg, D. 2018 Vertical drafts and mixing in stratified turbulence: sharp transition with Froude number. Europhys. Lett. 123, 44002.CrossRefGoogle Scholar
Ferrari, R. & Wunsch, C. 2004 Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid Mech. 36, 281314.Google Scholar
Ferraro, A. 2019 Exploiting marginal stability in slow–fast quasilinear dynamical systems. In Proceedings of the Woods Hole Oceanographic Institution Summer Study Program in Geophysical Fluid Dynamics.Google Scholar
Fitzgerald, J.G. & Farrell, B.F. 2014 Mechanisms of mean flow formation and suppression in two-dimensional Rayleigh–Bénard convection. Phys. Fluids 26, 054104.CrossRefGoogle Scholar
Fitzgerald, J.G. & Farrell, B.F. 2018 Statistical state dynamics of vertically sheared horizontal flows in two-dimensional stratified turbulence. J. Fluid Mech. 854, 544590.CrossRefGoogle Scholar
Fitzgerald, J.G. & Farrell, B.F. 2019 Statistical state dynamics of buoyancy layer formation via the Phillips mechanism in two-dimensional stratified turbulence. J. Fluid Mech. 864, R3.CrossRefGoogle Scholar
Fritts, D.C., Lund, T.S., Wan, K. & Liu, H.-L. 2021 Numerical simulation of mountain waves over the southern Andes. Part II: Momentum fluxes and wave–mean-flow interactions. J. Atmos. Sci. 78, 30693088.CrossRefGoogle Scholar
Garanaik, A. & Venayagamoorthy, S.K. 2018 Assessment of small-scale anisotropy in stably stratified turbulent flow using direct numerical simulations. Phys. Fluids 30, 126602.CrossRefGoogle Scholar
Garanaik, A. & Venayagamoorthy, S.K. 2019 On the inference of the state of turbulence and mixing efficiency in stably stratified flows. J. Fluid Mech. 867, 323333.CrossRefGoogle Scholar
Garaud, P., Gallet, B. & Bischoff, T. 2015 The stability of stratified spatially periodic shear flows at low Péclet number. Phys. Fluids 27, 084104.CrossRefGoogle Scholar
Gregg, M.C., D'Asaro, E.A., Riley, J.J. & Kunze, E. 2018 Mixing efficiency in the ocean. Annu. Rev. Mar. Sci. 10, 443473.CrossRefGoogle ScholarPubMed
Hall, P. & Sherwin, S. 2010 Streamwise vortices in shear flows: harbingers of transition and the skeleton of coherent structures. J. Fluid Mech. 661, 178205.CrossRefGoogle Scholar
Hamilton, J.M., Kim, J. & Waleffe, F. 1995 Regeneration mechanisms of near-wall turbulence structures. J. Fluid Mech. 287, 317348.CrossRefGoogle Scholar
Holleman, R.C., Geyer, W.R. & Ralson, D.K. 2016 Stratified turbulence and mixing efficiency in a salt wedge estuary. J. Phys. Oceanogr. 46, 17691783.CrossRefGoogle Scholar
Howland, C.J., Taylor, J.R. & Caulfield, C.P. 2020 Mixing in forced stratified turbulence and its dependence on large-scale forcing. J. Fluid Mech. 898, A7.CrossRefGoogle Scholar
Julien, K. & Knobloch, E. 2007 Reduced models for fluid flows with strong constraints. J. Math. Phys. 48, 065405.CrossRefGoogle Scholar
Kawahara, G. & Kida, S. 2001 Periodic motion embedded in plane Couette turbulence: regeneration cycle and burst. J. Fluid Mech. 449, 291300.CrossRefGoogle Scholar
Khani, S. 2018 Mixing efficiency in large-eddy simulations of stratified turbulence. J. Fluid Mech. 849, 373394.CrossRefGoogle Scholar
Khani, S. & Waite, M.L. 2013 Effective eddy viscosity in stratified turbulence. J. Turbul. 14, 4970.CrossRefGoogle Scholar
Khani, S. & Waite, M.L. 2016 Backscatter in stratified turbulence. Eur. J. Mech. B/Fluids 60, 112.CrossRefGoogle Scholar
Kim, E., Billant, P. & Gallaire, F. 2020 Nonlinear evolution of the centrifugal instability using a semilinear model. J. Fluid Mech. 897, A34.Google Scholar
Klein, R. 2010 Scale-dependent models for atmospheric flows. Annu. Rev. Fluid Mech. 42, 249274.CrossRefGoogle Scholar
Kumar, A., Verma, M.K. & Sukhatme, J. 2017 Phenomenology of two-dimensional stably stratified turbulence under large-scale forcing. J. Turbul. 18, 219239.CrossRefGoogle Scholar
Lang, C.J. & Waite, M.L. 2019 Scale-dependent anisotropy in forced stratified turbulence. Phys. Rev. Fluids 4, 044801.CrossRefGoogle Scholar
Legg, S. 2021 Mixing by oceanic lee waves. Annu. Rev. Fluid Mech. 53, 173201.CrossRefGoogle Scholar
Lilly, D.K. 1983 Stratified turbulence and the mesoscale variability of the atmosphere. J. Atmos. Sci. 40 (3), 749761.2.0.CO;2>CrossRefGoogle Scholar
Lindborg, E. 2006 The energy cascade in a strongly stratified fluid. J. Fluid Mech. 550, 207242.CrossRefGoogle Scholar
Lozovatsky, I.D. & Fernando, H.J.S. 2013 Mixing efficiency in natural flows. Phil. Trans. R. Soc. A 371, 20120213.CrossRefGoogle ScholarPubMed
Lucas, D. & Caulfield, C.P. 2017 Irreversible mixing by unstable periodic orbits in buoyancy dominated stratified turbulence. J. Fluid Mech. 832, R1.CrossRefGoogle Scholar
Lucas, D., Caulfield, C.P. & Kerswell, R.R. 2017 Layer formation in horizontally forced stratified turbulence: connecting exact coherent structures to linear instabilities. J. Fluid Mech. 832, 409437.CrossRefGoogle Scholar
MacKinnon, J.A., Zhao, Z., Whalen, C.B., Waterhouse, A.F., Trossman, D.S., Sun, O.M. & Laurent, L.C.S. 2017 Climate process team on internal wave-driven ocean mixing. Bull. Am. Meteorol. Soc. 98 (11), 24292454.CrossRefGoogle Scholar
Maffioli, A. 2017 Vertical spectra of stratified turbulence at large horizontal scales. Phys. Rev. Fluids 2, 104802.CrossRefGoogle Scholar
Maffioli, A. 2019 Asymmetry of vertical buoyancy gradient in stratified turbulence. J. Fluid Mech. 870, 266289.CrossRefGoogle Scholar
Maffioli, A., Brethouwer, G. & Lindborg, E. 2016 Mixing efficiency in stratified turbulence. J. Fluid Mech. 794, R3.CrossRefGoogle Scholar
Maffioli, A. & Davidson, P.A. 2016 Dynamics of stratified turbulence decaying from a high buoyancy Reynolds number. J. Fluid Mech. 786, 210233.CrossRefGoogle Scholar
Marston, J.B., Chini, G.P. & Tobias, S.M. 2016 Generalized quasilinear approximation: application to zonal jets. Phys. Rev. Lett. 116 (21), 214501.CrossRefGoogle ScholarPubMed
Michel, G. & Chini, G.P. 2019 Multiple scales analysis of slow-fast quasi-linear systems. Proc. R. Soc. A 475, 20180639.CrossRefGoogle ScholarPubMed
Miller, R. 2007 Primitive equation models. In Numerical Modeling of Ocean Circulation. Cambridge University Press.CrossRefGoogle Scholar
Monismith, S.G., Koseff, J.R. & White, B.L. 2018 Mixing efficiency in the presence of stratification: when is it constant? Geophys. Res. Lett. 45, 56275634.CrossRefGoogle Scholar
Montemuro, B., White, C.M., Klewicki, J.C. & Chini, G.P. 2020 A self-sustaining process theory for uniform momentum zones and internal shear layers in high Reynolds number shear flows. J. Fluid Mech. 901, A28.CrossRefGoogle Scholar
Moum, J.N. 1996 Energy-containing scales of turbulence in the ocean thermocline. J. Geophys. Res. 101, 1409514109.CrossRefGoogle Scholar
Osborn, T.R. 1980 Estimates of the local rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr. 10, 8389.2.0.CO;2>CrossRefGoogle Scholar
Page, J. & Kerswell, R.R. 2020 Searching turbulence for periodic orbits with dynamic mode decomposition. J. Fluid Mech. 886, A28.CrossRefGoogle Scholar
Parker, J.P., Caulfield, C.P. & Kerswell, R.R. 2019 Kelvin–Helmoltz billows above Richardson number 1/4. J. Fluid Mech. 879, R1.CrossRefGoogle Scholar
Peltier, W.R. & Caulfield, C.P. 2003 Mixing efficiency in stratified shear flows. Annu. Rev. Fluid Mech. 35, 135167.CrossRefGoogle Scholar
Portwood, G.D., de Bruyn Kops, S.M. & Caulfield, C.P. 2019 Asymptotic dynamics of high dynamic range stratified turbulence. Phys. Rev. Lett. 122, 194504.CrossRefGoogle ScholarPubMed
Portwood, G.D., de Bruyn Kops, S.M., Taylor, J.R., Salehipour, H. & Caulfield, C.P. 2016 Robust identification of dynamically distinct regions in stratified turbulence. J. Fluid Mech. 807, R2.CrossRefGoogle Scholar
Riley, J.J. & Lelong, M.-P. 2000 Fluid motions in the presence of strong stable stratification. Annu. Rev. Fluid Mech. 32, 613657.CrossRefGoogle Scholar
Riley, J.J. & Lindborg, E. 2013 Recent progress in stratified turbulence. In Ten chapters in Turbulence (ed. P.A. Davidson), p. 269. Cambridge University Press.CrossRefGoogle Scholar
Rorai, C., Minini, P.D. & Pouquet, A. 2014 Turbulence comes in bursts in stably stratified flows. Phys. Rev. E 89, 043002.CrossRefGoogle ScholarPubMed
Salehipour, H. & Peltier, W.R. 2015 Diapycnal diffusivity, turbulent Prandtl number and mixing efficiency in Boussinesq stratified turbulence. J. Fluid Mech. 775, 464500.CrossRefGoogle Scholar
Salehipour, H., Peltier, W.R. & Caulfield, C.P. 2018 Self-organized criticality of turbulence in strongly stratified mixing layers. J. Fluid Mech. 856, 228256.CrossRefGoogle Scholar
Sherman, F.S., Imberger, J. & Corcos, G.M. 1978 Turbulence and mixing in stably stratified waters. Annu. Rev. Fluid Mech. 10, 267288.CrossRefGoogle Scholar
Smyth, W.D. & Moum, J.N. 2000 Length scales of turbulence in stably stratified mixing layers. Phys. Fluids 12, 13271342.CrossRefGoogle Scholar
Smyth, W.D. & Moum, J.N. 2013 Marginal instability and deep cycle turbulence in the eastern equatorial Pacific Ocean. Geophys. Res. Lett. 40, 15.CrossRefGoogle Scholar
Smyth, W.D., Nash, J.D. & Moum, J.M. 2019 Self-organized criticality in geophysical turbulence. Nat. Sci. Rep. 9, 3747.CrossRefGoogle ScholarPubMed
Srinivasan, K. & Young, W.R. 2012 Zonostrophic instability. J. Atmos. Sci. 69, 16331656.CrossRefGoogle Scholar
Thomas, V.L., Farrell, B.F., Ioannou, P.J. & Gayme, D.F. 2015 A minimal model of self-sustaining turbulence. Phys. Fluids 27 (10), 105104.CrossRefGoogle Scholar
Tobias, S. & Marston, B. 2017 Three-dimensional rotating Couette flow via the generalised quasilinear approximation. J. Fluid Mech. 810, 412428.CrossRefGoogle Scholar
Tobias, S.M., Dagon, K. & Marston, J.B. 2011 Astrophysical fluid dynamics via direct statistical simulation. Astrophys. J. 727, 127138.CrossRefGoogle Scholar
Tobias, S.M. & Marston, J.B. 2013 Direct statistical simulation of out-of-equilibrium jets. Phys. Rev. Lett. 110, 104502.CrossRefGoogle ScholarPubMed
Tuckerman, L., Chantry, M. & Barkley, D. 2020 Patterns in wall-bounded shear flows. Annu. Rev. Fluid Mech. 52, 343367.CrossRefGoogle Scholar
Turner, J.S. 1973 Buoyancy Effects in Fluids. Cambridge University Press.CrossRefGoogle Scholar
Venayagamoorthy, S.K. & Koseff, J.R. 2016 On the flux Richardson number in stably stratified turbulence. J. Fluid Mech. 798, R1.CrossRefGoogle Scholar
Waite, M.L. 2011 Stratified turbulence at the buoyancy scale. Phys. Fluids 23, 066602.CrossRefGoogle Scholar
Waite, M.L. 2014 Direct numerical simulations of laboratory-scale stratified turbulence. In Modelling Atmospheric and Oceanic Flows: Insights from Laboratory Experiments and Numerical Simulations (ed. T. von Larcher & P. Williams), pp. 159–175. American Geophysical Union.CrossRefGoogle Scholar
Waite, M.L. & Bartello, P. 2004 Stratified turbulence dominated by vortical motion. J. Fluid Mech. 517, 281308.CrossRefGoogle Scholar
Young, W.R. & Jones, S. 1991 Shear dispersion. Phys. Fluids A3, 10871101.CrossRefGoogle Scholar

Chini et al. supplementary movie

MTQL simulation of strongly stratified Kolmogorov flow.

Download Chini et al. supplementary movie(Video)
Video 20.9 MB
Supplementary material: File

Chini et al. supplementary material

Python codes

Download Chini et al. supplementary material(File)
File 8.2 KB