Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-19T01:36:50.954Z Has data issue: false hasContentIssue false

Multiphase modelling of precipitation-induced membrane formation

Published online by Cambridge University Press:  07 February 2020

P. S. Eastham*
Affiliation:
Department of Mathematics, Florida State University, Tallahassee, FL32304, USA
M. N. J. Moore
Affiliation:
Department of Mathematics, Florida State University, Tallahassee, FL32304, USA
N. G. Cogan
Affiliation:
Department of Mathematics, Florida State University, Tallahassee, FL32304, USA
Q. Wang
Affiliation:
Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL32306, USA
O. Steinbock
Affiliation:
Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL32306, USA
*
Email address for correspondence: peastham@math.fsu.edu

Abstract

We formulate a model for the dynamic growth of a membrane developing in a flow as the result of a precipitation reaction, a situation inspired by recent microfluidic experiments. The precipitating solid introduces additional forces on the fluid and eventually forms a membrane that is fixed in the flow due to adhesion with a substrate. A key challenge is that, in general, the location of the immobile membrane is unknown a priori. To model this situation, we use a multiphase framework with fluid and membrane phases; the aqueous chemicals exist as scalar fields that react within the fluid to induce phase change. To verify that the model exhibits desired fluid–structure behaviours, we make simplifying assumptions to obtain a reduced form of the equations that is amenable to exact solution. This analysis demonstrates no-slip behaviour on the developing membrane without requiring fluid–membrane interface boundary conditions. The model has applications towards precipitate reactions where the precipitate greatly affects the surrounding flow, a situation appearing in many laboratory and geophysical contexts including the hydrothermal vent theory for the origin of life. More generally, this model can be used to address fluid–structure interaction problems that feature the dynamic generation of structures.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agarwal, V. & Peters, B. 2014 Solute precipitate nucleation: a review of theory and simulation advances. In Advances in Chemical Physics, vol. 155, pp. 97160. John Wiley and Sons.Google Scholar
Ambrosi, D. & Preziosi, L. 2002 On the closure of mass balance models for tumor growth. Math. Models Meth. Appl. Sci. 12 (5), 737754.CrossRefGoogle Scholar
Angot, P. 1999 Analysis of singular perturbations on the Brinkman problem for fictitious domain models of viscous flows. Math. Meth. Appl. Sci. 22 (16), 13951412.3.0.CO;2-3>CrossRefGoogle Scholar
Barge, L. M. & White, L. M. 2017 Experimentally testing hydrothermal vent origin of life on enceladus and other icy/ocean worlds. Astrobiology 17 (9), 820833.CrossRefGoogle ScholarPubMed
Batista, B. C. & Steinbock, O. 2015 Growing inorganic membranes in microfluidic devices: chemical gardens reduced to linear walls. J. Phys. Chem. C 119 (48), 2704527052.CrossRefGoogle Scholar
Beavers, G. S. & Joseph, D. D. 1967 Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30 (1), 197207.CrossRefGoogle Scholar
Bezanson, J., Edelman, A., Karpinski, S. & Shah, V. B. 2017 Julia: a fresh approach to numerical computing. SIAM Rev. 59 (1), 6598.CrossRefGoogle Scholar
Boyce, W. E. & DiPrima, R. C. 2008 Elementary Differential Equations. Wiley.Google Scholar
Breward, C. JW., Byrne, H. M. & Lewis, C. E. 2003 A multiphase model describing vascular tumour growth. Bull. Math. Biol. 65 (4), 609640.CrossRefGoogle ScholarPubMed
Brinkman, H. C. 1949 A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Flow Turbul. Combust. 1 (1), 27.CrossRefGoogle Scholar
Byrne, H. & Preziosi, L. 2003 Modelling solid tumour growth using the theory of mixtures. Math. Med. Biol. 20 (4), 341366.CrossRefGoogle ScholarPubMed
Chang, R. & Goldsby, K. 2013 Chemistry, 11th edn. McGraw-Hill.Google ScholarPubMed
Childress, S. 1972 Viscous flow past a random array of spheres. J. Chem. Phys. 56 (6), 25272539.CrossRefGoogle Scholar
Childress, S., Shelley, M. & Zhang, J. 2012 Fluid-structure interactions: research in the courant institute’s applied mathematics laboratory. Commun. Pure Appl. Maths 65 (12), 16971721.CrossRefGoogle Scholar
Cogan, N. G. & Chellam, S. 2009 Incorporating pore blocking, cake filtration, and eps production in a model for constant pressure bacterial fouling during dead-end microfiltration. J. Membr. Sci. 345 (1–2), 8189.CrossRefGoogle Scholar
Cogan, N. G. & Guy, R. D. 2010 Multiphase flow models of biogels from crawling cells to bacterial biofilms. HFSP J. 4 (1), 1125.CrossRefGoogle ScholarPubMed
Cogan, N. G. & Keener, J. P. 2004 The role of the biofilm matrix in structural development. Math. Med. Biol. 21 (2), 147166.CrossRefGoogle ScholarPubMed
Cogan, N. G. & Keener, J. P. 2005 Channel formation in gels. SIAM J. Appl. Maths 65 (6), 18391854.CrossRefGoogle Scholar
Conway, J. H. & Sloane, N. J. A. 2013 Sphere Packings, Lattices and Groups, vol. 290. Springer Science & Business Media.Google Scholar
Ding, Y., Batista, B., Steinbock, O., Cartwright, J. HE. & Cardoso, S. SS. 2016 Wavy membranes and the growth rate of a planar chemical garden: enhanced diffusion and bioenergetics. Proc. Natl Acad. Sci. USA 113 (33), 91829186.CrossRefGoogle ScholarPubMed
Drew, D. A. 1983 Mathematical modeling of two-phase flow. Annu. Rev. Fluid Mech. 15 (1), 261291.CrossRefGoogle Scholar
Drew, D. A. & Passman, S. L. 2006 Theory of Multicomponent Fluids, vol. 135. Springer Science & Business Media.Google Scholar
Dullien, F. AL. 2012 Porous Media: Fluid Transport and Pore Structure. Academic Press.Google Scholar
Durlofsky, L. & Brady, J. F. 1987 Analysis of the Brinkman equation as a model for flow in porous media. Phys. Fluids 30 (11), 33293341.CrossRefGoogle Scholar
Frieboes, H. B., Lowengrub, J. & Cristini, V. 2010 Diffusional instability as a mechanism of tumor invasion. In Multiscale Cancer Model., pp. 218237. CRC Press.Google Scholar
Golden, K. M. 1997 Percolation Models for Porous Media. Springer.CrossRefGoogle Scholar
Hill, R. J., Koch, D. L. & Ladd, A. JC. 2001 The first effects of fluid inertia on flows in ordered and random arrays of spheres. J. Fluid Mech. 448, 213241.CrossRefGoogle Scholar
Keener, J. P., Sircar, S. & Fogelson, A. L. 2011 Kinetics of swelling gels. SIAM J. Appl. Maths 71 (3), 854875.CrossRefGoogle Scholar
Leiderman, K. & Fogelson, A. L. 2011 Grow with the flow: a spatial–temporal model of platelet deposition and blood coagulation under flow. Math. Med. Biol. 28 (1), 4784.CrossRefGoogle ScholarPubMed
Leiderman, K. & Fogelson, A. L. 2013 The influence of hindered transport on the development of platelet thrombi under flow. Bull. Math. Biol. 75 (8), 12551283.CrossRefGoogle ScholarPubMed
Magi, R. E. & Keener, J. P. 2017 Modelling a biological membrane as a two phase viscous fluid with curvature elasticity. SIAM J. Appl. Maths 77 (1), 128153.CrossRefGoogle Scholar
Makki, R., Al-Humiari, M., Dutta, S. & Steinbock, O. 2009 Hollow microtubes and shells from reactant-loaded polymer beads. Angew. Chemie Intl Ed. 48 (46), 87528756.CrossRefGoogle ScholarPubMed
Mark, D., Haeberle, S., Roth, G., Von Stetten, F. & Zengerle, R. 2010 Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. In Microfluidics Based Microsystems, pp. 305376. Springer.CrossRefGoogle Scholar
Martin, W., Baross, J., Kelley, D. & Russell, M. J. 2008 Hydrothermal vents and the origin of life. Nat. Rev. Microbiol. 6 (11), 805814.CrossRefGoogle ScholarPubMed
Matsue, M., Itatani, M., Fang, Q., Shimizu, Y., Unoura, K. & Nabika, H. 2018 Role of electrolyte in liesegang pattern formation. Langmuir 34 (37), 1118811194.CrossRefGoogle ScholarPubMed
Moore, M. N. J. 2017 Riemann-Hilbert problems for the shapes formed by bodies dissolving, melting, and eroding in fluid flows. Commun. Pure Appl. Maths 70 (9), 18101831.CrossRefGoogle Scholar
Mouritsen, O. G. 2005 Life-as a Matter of Fat. Springer.CrossRefGoogle Scholar
Mu, L., Wang, J. & Ye, X. 2014 A stable numerical algorithm for the Brinkman equations by weak Galerkin finite element methods. J. Comput. Phys. 273, 327342.CrossRefGoogle Scholar
Neale, G. & Nader, W. 1974 Practical significance of brinkman’s extension of darcy’s law: coupled parallel flows within a channel and a bounding porous medium. Can. J. Chem. Engng 52 (4), 475478.CrossRefGoogle Scholar
Nge, P. N., Rogers, C. I. & Woolley, A. T. 2013 Advances in microfluidic materials, functions, integration, and applications. Chem. Rev. 113 (4), 25502583.CrossRefGoogle ScholarPubMed
Nunziato, J. W. & Walsh, E. K. 1980 On ideal multiphase mixtures with chemical reactions and diffusion. Arch. Rat. Mech. Anal. 73 (4), 285311.CrossRefGoogle Scholar
Ochoa-Tapia, J. A. & Whitaker, S. 1995 Momentum transfer at the boundary between a porous medium and a homogeneous fluid – II. comparison with experiment. Intl J. Heat Mass Transfer 38 (14), 26472655.CrossRefGoogle Scholar
Ostapienko, B. I., Lopez, D. & Komarova, S. V. 2019 Mathematical modeling of calcium phosphate precipitation in biologically relevant systems: scoping review. Biomech. Model. Mechanobiol. 18 (2), 277289.CrossRefGoogle ScholarPubMed
Preziosi, L. & Tosin, A. 2009 Multiphase modelling of tumour growth and extracellular matrix interaction: mathematical tools and applications. J. Math. Biol. 58 (4–5), 625.CrossRefGoogle ScholarPubMed
Quaife, B. D. & Moore, M. N. J. 2018 A boundary-integral framework to simulate viscous erosion of a porous medium. J. Comput. Phys. 375, 121.CrossRefGoogle Scholar
Riccati, J.1724 Animadversiones in Aequationes Differentiales Secundi Gradus, Actorum Eruditorum Supplementa 8.1724 (1724), pp. 66–73.Google Scholar
Ristroph, L., Moore, M. NJ., Childress, S., Shelley, M. J. & Zhang, J. 2012 Sculpting of an erodible body by flowing water. Proc. Natl Acad. Sci. USA 109 (48), 1960619609.CrossRefGoogle ScholarPubMed
Roszol, L. & Steinbock, O. 2011 Controlling the wall thickness and composition of hollow precipitation tubes. Phys. Chem. Chem. Phys. 13 (45), 2010020103.CrossRefGoogle ScholarPubMed
Rubinow, S. I. 1975 Introduction to Mathematical Biology. John Wiley & Sons.Google Scholar
Saffman, P. G. 1971 On the boundary condition at the surface of a porous medium. Stud. Appl. Maths 50 (2), 93101.CrossRefGoogle Scholar
Sircar, S., Keener, J. P. & Fogelson, A. L. 2013 The effect of divalent vs. monovalent ions on the swelling of mucin-like polyelectrolyte gels: governing equations and equilibrium analysis. J. Chem. Phys. 138 (1), 014901.CrossRefGoogle ScholarPubMed
Sorribes, I. C., Moore, M. N. J., Byrne, H. M. & Jain, H. V. 2019 A biomechanical model of tumor-induced intracranial pressure and edema in brain tissue. Biophys. J. 116 (8), 15601574CrossRefGoogle ScholarPubMed
Strikwerda, J. C. 2004 Finite Difference Schemes and Partial Differential Equations, vol. 88. SIAM.Google Scholar
Strychalski, W., Copos, C. A., Lewis, O. L. & Guy, R. D. 2015 A poroelastic immersed boundary method with applications to cell biology. J. Comput. Phys. 282, 7797.CrossRefGoogle Scholar
Strychalski, W. & Guy, R. D. 2016 Intracellular pressure dynamics in blebbing cells. Biophys. J. 110 (5), 11681179.CrossRefGoogle ScholarPubMed
Tenenbaum, M. & Pollard, H. 1985 Ordinary Differential Equations. Dover.Google Scholar
Vogel, S. 1996 Life in Moving Fluids: The Physical Biology of Flow. Princeton University Press.Google Scholar
Wang, Q., Bentley, M. R. & Steinbock, O. 2017 Self-organization of layered inorganic membranes in microfluidic devices. J. Phys. Chem. C. 121 (26), 1412014127.CrossRefGoogle Scholar
Yang, X., Gong, Y., Li, J., Eisenberg, R. S. & Wang, Q. 2019 Quasi-incompressible multi-species ionic fluid models. J. Mol. Liquids 273, 677691.CrossRefGoogle Scholar
Zhang, T. & Klapper, I. 2010 Mathematical model of biofilm induced calcite precipitation. Water Sci. Technol. 61 (11), 29572964.CrossRefGoogle ScholarPubMed