Hostname: page-component-7c8c6479df-hgkh8 Total loading time: 0 Render date: 2024-03-28T10:10:36.727Z Has data issue: false hasContentIssue false

The turbulent Faraday instability in miscible fluids

Published online by Cambridge University Press:  29 November 2019

Antoine Briard*
Affiliation:
Centre de Mathématiques et de Leurs Applications, CNRS, ENS Paris-Saclay, Université Paris-Saclay, 94235, Cachan CEDEX, France
Louis Gostiaux
Affiliation:
Univ Lyon, École Centrale de Lyon, INSA Lyon, Université Claude Bernard Lyon I, CNRS, Laboratoire de Mécanique des Fluides et d’Acoustique, UMR 5509, 36 Avenue Guy de Collongue, F-69134, ECULLY, France
Benoît-Joseph Gréa
Affiliation:
DIF, DAM, CEA, 91297Arpajon, France
*
Email address for correspondence: antoine.briard@hotmail.fr

Abstract

Experiments of a turbulent mixing zone created by the Faraday instability at the statically stable interface between salt and fresh water are presented. The two-layer system, contained in a cuboidal tank of large dimensions, is accelerated vertically and periodically at various frequencies and amplitudes for three different density contrasts. We have developed a linear approach accounting for the full inhomogeneous and viscous problem, that is applied to a linear piecewise background density profile, and recovers the limiting cases of interface and homogeneous turbulence with a fully developed mixing layer. At onset, the wavelength of the most amplified modes and the corresponding Floquet exponent of the interface both verify our predictions. The dynamics is rather different when the instability is triggered from a sharp or diffuse interface: in the latter case, a change of characteristic wavelengths can be observed experimentally and explained by the theory. In the turbulent regime, the time evolution of the mixing zone size $L(t)$ for various experimental configurations compares well with confined direct numerical simulations. For some initial conditions, a short harmonic response of the instability is observed before the usual subharmonic one. Finally, the ultimate size of the mixing layer $L_{end}$, measured with a probe after the saturation of the instability and end of the forcing, is in excellent agreement with the recent theoretical prediction $L_{sat}=2{\mathcal{A}}g_{0}(2F+4)/\unicode[STIX]{x1D714}^{2}$, where $g_{0}$ is the gravitational acceleration, ${\mathcal{A}}$ the Atwood number, $\unicode[STIX]{x1D714}/2\unicode[STIX]{x03C0}$ the frequency and $F$ the acceleration ratio.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amiroudine, S., Zoueshtiagh, F. & Narayanan, R. 2012 Mixing generated by Faraday instability between miscible liquids. Phys. Rev. E 85, 016326.Google ScholarPubMed
Andrews, M. J. & Spalding, D. B. 1990 A simple experiment to investigate two-dimensional mixing by Rayleigh–Taylor instability. Phys. Fluids A 2 (6), 922927.CrossRefGoogle Scholar
Benielli, D. & Sommeria, J. 1998 Excitation and breaking of internal gravity waves by parametric instability. J. Fluid Mech. 374, 117144.CrossRefGoogle Scholar
Benjamin, T. B. & Ursell, F. 1954 The stability of the plane free surface of a liquid in vertical periodic motion. Proc. R. Soc. Lond. A 225 (1163), 505515.Google Scholar
Briard, A., Gréa, B.-J. & Gostiaux, L. 2019 The harmonic to sub-harmonic transition of the Faraday instability in miscible fluids. Phys. Rev. Fluids 4, 044502.CrossRefGoogle Scholar
Diwakar, S. V., Jajoo, V., Amiroudine, S., Matsumoto, S., Narayanan, R. & Zoueshtiagh, F. 2018 Influence of capillarity and gravity on confined Faraday waves. Phys. Rev. Fluids 3, 073902.CrossRefGoogle Scholar
Diwakar, S. V., Zoueshtiagh, F., Amiroudine, S. & Narayanan, R. 2015 The Faraday instability in miscible fluid systems. Phys. Fluids 27, 084111.CrossRefGoogle Scholar
Douady, S. 1990 Experimental study of the Faraday instability. J. Fluid Mech. 221, 383409.CrossRefGoogle Scholar
Edwards, W. S. & Fauve, S. 1994 Patterns and quasi-patterns in the Faraday experiment. J. Fluid Mech. 278, 123148.CrossRefGoogle Scholar
Faraday, M. 1831 Xvii. On a peculiar class of acoustical figures; and on certain forms assumed by groups of particles upon vibrating elastic surfaces. Phil. Trans. R. Soc. Lond. 121, 299340.Google Scholar
Fauve, S., Kumar, K., Laroche, C., Beysens, D. & Garrabos, Y. 1992 Parametric instability of a liquid–vapor interface close to the critical point. Phys. Rev. Lett. 68 (21), 31603164.CrossRefGoogle ScholarPubMed
Fernando, H. J. S. 1991 Turbulent mixing in stratified fluids. Annu. Rev. Fluid Mech. 23, 455493.CrossRefGoogle Scholar
Gandikota, G., Chatain, D., Amiroudine, S., Lyubimova, T. & Beysens, D. 2014 Faraday instability in a near-critical fluid under weightlessness. Phys. Rev. E 89, 013022.Google Scholar
Gréa, B.-J. 2013 The rapid acceleration model and the growth rate of a turbulent mixing zone induced by Rayleigh–Taylor instability. Phys. Fluids 25, 015118.CrossRefGoogle Scholar
Gréa, B.-J. & Briard, A. 2019 Frozen waves in turbulent mixing layers. Phys. Rev. Fluids 4, 064608.CrossRefGoogle Scholar
Gréa, B.-J. & Ebo Adou, A. 2018 What is the final size of turbulent mixing zones driven by the Faraday instability? J. Fluid Mech. 837, 293319.CrossRefGoogle Scholar
Jalikop, S. V. & Juel, A. 2009 Steep capillary-gravity waves in oscillatory shear-driven flows. J. Fluid Mech. 640, 131150.CrossRefGoogle Scholar
Jause-Labert, C., Godeferd, F. S. & Favier, B. 2012 Numerical validation of the volume penalization method in three-dimensional pseudo-spectral simulations. Comput. Fluids 67, 4156.CrossRefGoogle Scholar
Kadoch, B., Kolomenskiy, D., Angot, P. & Schneider, K. 2012 A volume penalization method for incompressible flows and scalar advection–diffusion with moving obstacles. J. Comput. Phys. 231, 43654383.CrossRefGoogle Scholar
Kityk, A. V., Embs, J., Mekhonoshin, V. V. & Wagner, C. 2005 Spatiotemporal characterization of interfacial Faraday waves by means of a light absorption technique. Phys. Rev. E 72, 036209.Google ScholarPubMed
Kumar, K. & Tuckerman, L. 1994 Parametric instability of the interface between two fluids. J. Fluid Mech. 279, 4968.CrossRefGoogle Scholar
Périnet, N., Juric, D. & Tuckerman, L. S. 2009 Numerical simulation of Faraday waves. J. Fluid Mech. 635, 126.CrossRefGoogle Scholar
Rajchenbach, J. & Clamond, D. 2015 Faraday waves: their dispersion relation, nature of bifurcation and wavenumber selection revisited. J. Fluid Mech. 777, R2.CrossRefGoogle Scholar
Skeldon, A. C. & Guidoboni, G. 2007 Pattern slection for Faraday waves in an incompressible viscous fluid. J. Appl. Maths 67, 10641100.Google Scholar
Skeldon, A. C. & Rucklidge, A. M. 2015 Can weakly nonlinear theory explain Faraday wave patterns near onset? J. Fluid Mech. 777, 604632.CrossRefGoogle Scholar
Thorpe, S. A. 1968 On standing internal gravity waves of finite amplitude. J. Fluid Mech. 32, 489528.CrossRefGoogle Scholar
Winters, K. B., Lombard, P. N., Riley, J. J. & D’Asaro, E. A. 1995 Available potential energy and mixing in density-stratified fluids. J. Fluid Mech. 289, 115128.CrossRefGoogle Scholar
Yih, C.-S. 1960 Gravity waves in a stratified fluid. J. Fluid Mech. 8, 481508.CrossRefGoogle Scholar
Zoueshtiagh, F., Amiroudine, S. & Narazanan, R. 2009 Experimental and numerical study of miscible Faraday instability. J. Fluid Mech. 628, 4355.CrossRefGoogle Scholar

Briard et al. supplementary movie 1

Raw images of Exp A15F3w21 with position of the platform in the upper right corner.

Download Briard et al. supplementary movie 1(Video)
Video 18.7 MB

Briard et al. supplementary movie 2

Raw images of Exp A30F7w43a with position of the platform in the upper right corner.

Download Briard et al. supplementary movie 2(Video)
Video 5.9 MB

Briard et al. supplementary movie 3

Raw images of Exp A45F7w43a with position of the platform in the upper right corner.

Download Briard et al. supplementary movie 3(Video)
Video 6 MB