Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-19T22:56:44.943Z Has data issue: false hasContentIssue false

Reversal cycle in square Rayleigh–Bénard cells in turbulent regime

Published online by Cambridge University Press:  04 November 2016

Andres Castillo-Castellanos
Affiliation:
Sorbonne Universités, UPMC Université Paris 06, UMR 7190, Institut Jean Le Rond d’Alembert, F-75005, Paris, France LIMSI, CNRS, Université Paris-Saclay, F-91405 Orsay, France
Anne Sergent*
Affiliation:
LIMSI, CNRS, Université Paris-Saclay, F-91405 Orsay, France Sorbonne Universités, UPMC Université Paris 06, UFR d’Ingénierie, F-75005, Paris, France
Maurice Rossi
Affiliation:
Sorbonne Universités, UPMC Université Paris 06, UMR 7190, Institut Jean Le Rond d’Alembert, F-75005, Paris, France CNRS, UMR 7190, Institut Jean Le Rond d’Alembert, F-75005, Paris, France
*
Email address for correspondence: anne.sergent@limsi.fr

Abstract

We consider long-term data from direct numerical simulations of turbulent Rayleigh–Bénard convection inside two-dimensional (2-D) square cells. For the range of Rayleigh numbers $Ra=10^{7}{-}10^{8}$ and Prandtl numbers $Pr=3.0{-}4.3$ considered, two types of flow regimes are observed: a regime consisting of consecutive reversals, when the global rotation switches sign; and a regime consisting of an extended cessation, when global rotation is absent. A filtering method discriminates these two regimes and allows us to identify two characteristic time scales for the former regime. A time rescaling is then used to tune our records to a common duration, thus putting into evidence a generic reversal cycle. This cycle is composed of three successive phases: acceleration, accumulation and release including a rebound event. We complement this view in terms of a global angular impulse, available mechanical energy, global kinetic energy and their corresponding transfer rates. For a particular realisation of a reversal, each phase is described in terms of the flow patterns (large diagonal roll, counter-rotating corner flows and thermal plumes) and tied to the corresponding energy processes. We conclude by performing linear as well as nonlinear stability studies to account for the triggering mechanism of the release.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Araujo, F. F., Grossmann, S. & Lohse, D. 2005 Wind reversals in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 95, 084502.Google Scholar
Bailon-Cuba, J., Emran, M. S. & Schumacher, J. 2010 Aspect ratio dependence of heat transfer and large-scale flow in turbulent convection. J. Fluid Mech. 655, 152173.CrossRefGoogle Scholar
Bell, J., Colella, P. & Glaz, H. 1989 A second-order projection method for the incompressible Navier–Stokes equations. J. Comput. Phys. 283, 257283.Google Scholar
Benzi, R. 2005 Flow reversal in a simple dynamical model of turbulence. Phys. Rev. Lett. 95 (2), 024502.Google Scholar
Brown, E. & Ahlers, G. 2006 Rotations and cessations of the large-scale circulation in turbulent Rayleigh–Bénard convection. J. Fluid Mech. 568, 351386.Google Scholar
Brown, E. & Ahlers, G. 2007 Large-scale circulation model for turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 98 (13), 134501.CrossRefGoogle ScholarPubMed
Brown, E. & Ahlers, G. 2008 A model of diffusion in a potential well for the dynamics of the large-scale circulation in turbulent Rayleigh–Bénard convection. Phys. Fluids 20 (7), 075101.Google Scholar
Chandra, M. & Verma, M. K. 2011 Dynamics and symmetries of flow reversals in turbulent convection. Phys. Rev. E 83 (6), 067303.Google Scholar
Chandra, M. & Verma, M. K. 2013 Flow reversals in turbulent convection via vortex reconnections. Phys. Rev. Lett. 110, 114503.Google Scholar
Clercx, H. J. H., Maassen, S. R. & Van Heijst, G. J. F. 1998 Spontaneous spin-up during the decay of 2d turbulence in a square container with rigid boundaries. Phys. Rev. Lett. 80 (23), 5129.Google Scholar
Funfschilling, D., Brown, E. & Ahlers, G. 2008 Torsional oscillations of the large-scale circulation in turbulent Rayleigh–Bénard convection. J. Fluid Mech. 607, 119139.Google Scholar
Grossmann, S. & Lohse, D. 2003 On geometry effects in Rayleigh–Bénard convection. J. Fluid Mech. 486, 105114.CrossRefGoogle Scholar
Hughes, G. O., Gayen, B. & Griffiths, R. W. 2013 Available potential energy in Rayleigh–Bénard convection. J. Fluid Mech. 729, R3.Google Scholar
Lhuillier, F., Hulot, G. & Gallet, Y. 2013 Statistical properties of reversals and chrons in numerical dynamos and implications for the geodynamo. Phys. Earth Planet. Inter. 220, 1936.Google Scholar
Lorenz, E. N. 1955 Available potential energy and the maintenance of the general circulation. Tellus 7 (2), 157167.CrossRefGoogle Scholar
Molenaar, D., Clercx, H. J. H. & Van Heijst, G. J. F. 2004 Angular momentum of forced 2D turbulence in a square no-slip domain. Physica D 196, 329340.Google Scholar
Ni, R., Huang, S.-D. & Xia, K.-Q. 2015 Reversals of the large-scale circulation in quasi-2D Rayleigh–Bénard convection. J. Fluid Mech. 778, R5.Google Scholar
Niemela, J. J., Skrbek, L., Sreenivasan, K. R. & Donnelly, R. J. 2001 The wind in confined thermal convection. J. Fluid Mech. 449, 169178.Google Scholar
Petschel, K., Wilczek, M., Breuer, M., Friedrich, R. & Hansen, U. 2011 Statistical analysis of global wind dynamics in vigorous Rayleigh–Bénard convection. Phys. Rev. E 84 (2), 026309.Google Scholar
Podvin, B. & Sergent, A. 2015 A large-scale investigation of wind reversal in a square Rayleigh–Bénard cell. J. Fluid Mech. 766, 172201.CrossRefGoogle Scholar
Podvin, B. & Sergent, A.2016 On a precursor mechanism for wind reversal in a square Rayleigh–Bénard cell. (submitted).CrossRefGoogle Scholar
van der Poel, E. P., Stevens, R. J. A. M. & Lohse, D. 2011 Connecting flow structures and heat flux in turbulent Rayleigh–Bénard convection. Phys. Rev. E 84, 045303.Google Scholar
Popinet, S.2016 Basilisk. Available at: http://basilisk.fr.Google Scholar
Resagk, C., du Puits, R., Thess, A., Dolzhansky, F. V., Grossmann, S., Fontenele Araujo, F. & Lohse, D. 2006 Oscillations of the large scale wind in turbulent thermal convection. Phys. Fluids 18 (9), 095105.Google Scholar
Shraiman, B. I. & Siggia, E. D. 1990 Heat transport in high-Rayleigh-number convection. Phys. Rev. A 42, 36503653.CrossRefGoogle ScholarPubMed
Sreenivasan, K. R., Bershadskii, A. & Niemela, J. J. 2002 Mean wind and its reversal in thermal convection. Phys. Rev. E 65 (5), 056306.Google Scholar
Stevens, R. J. A. M., Verzicco, R. & Lohse, D. 2010 Radial boundary layer structure and Nusselt number in Rayleigh–Bénard convection. J. Fluid Mech. 643, 495507.Google Scholar
Sugiyama, K., Ni, R., Stevens, R. J. A. M., Chan, T. S., Zhou, S.-Q., Xi, H.-D., Sun, C., Grossmann, S., Xia, K.-Q. & Lohse, D. 2010 Flow reversals in thermally driven turbulence. Phys. Rev. Lett. 105, 034503.CrossRefGoogle ScholarPubMed
Sutherland, B. R. 2010 Internal Gravity Waves. Cambridge University Press.Google Scholar
Tseng, Y. H. & Ferziger, J. H. 2001 Mixing and available potential energy in stratified flows. Phys. Fluids 13 (5), 12811293.CrossRefGoogle Scholar
Valet, J.-P., Fournier, A., Courtillot, V. & Herrero-Bervera, E. 2012 Dynamical similarity of geomagnetic field reversals. Nature 490 (7418), 8993.Google Scholar
Verma, M. K., Ambhire, S. C. & Pandey, A. 2015 Flow reversals in turbulent convection with free-slip walls. Phys. Fluids 27 (4), 047102.Google Scholar
Wagner, S. & Shishkina, O. 2013 Aspect-ratio dependency of Rayleigh–Bénard convection in box-shaped containers. Phys. Fluids 25 (8), 085110.Google Scholar
Wicht, J., Stellmach, S. & Harder, H. 2009 Numerical models of the geodynamo: from fundamental cartesian models to 3D simulations of field reversals. In Geomagnetic Field Variations, pp. 107158. Springer.Google Scholar
Winters, K. B., Lombard, P. N., Riley, J. J. & D’Asaro, E. A. 1995 Available potential energy and mixing in density-stratified fluids. J. Fluid Mech. 289, 115128.Google Scholar
Xi, H.-D. & Xia, K.-Q. 2008a Azimuthal motion, reorientation, cessation, and reversal of the large-scale circulation in turbulent thermal convection: a comparative study in aspect ratio one and one-half geometries. Phys. Rev. E 78 (3), 036326.Google ScholarPubMed
Xi, H.-D. & Xia, K.-Q. 2008b Flow mode transitions in turbulent thermal convection. Phys. Fluids 20 (5), 055104.Google Scholar
Xia, K.-Q., Sun, C. & Zhou, S.-Q. 2003 Particle image velocimetry measurement of the velocity field in turbulent thermal convection. Phys. Rev. E 68, 066303.Google Scholar