Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-20T04:04:11.547Z Has data issue: false hasContentIssue false

Critical values for the $\boldsymbol{\beta} $-transformation with a hole at $0$

Published online by Cambridge University Press:  02 May 2022

PIETER ALLAART
Affiliation:
Mathematics Department, University of North Texas, 1155 Union Cir #311430, Denton, TX 76203-5017, USA (e-mail: allaart@unt.edu)
DERONG KONG*
Affiliation:
College of Mathematics and Statistics, Chongqing University, Chongqing 401331, PR China

Abstract

Given $\beta \in (1,2]$ , let $T_{\beta }$ be the $\beta $ -transformation on the unit circle $[0,1)$ such that $T_{\beta }(x)=\beta x\pmod 1$ . For each $t\in [0,1)$ , let $K_{\beta }(t)$ be the survivor set consisting of all $x\in [0,1)$ whose orbit $\{T^{n}_{\beta }(x): n\ge 0\}$ never hits the open interval $(0,t)$ . Kalle et al [Ergod. Th. & Dynam. Sys. 40(9) (2020) 2482–2514] proved that the Hausdorff dimension function $t\mapsto \dim _{H} K_{\beta }(t)$ is a non-increasing Devil’s staircase. So there exists a critical value $\tau (\beta )$ such that $\dim _{H} K_{\beta }(t)>0$ if and only if $t<\tau (\beta )$ . In this paper, we determine the critical value $\tau (\beta )$ for all $\beta \in (1,2]$ , answering a question of Kalle et al (2020). For example, we find that for the Komornik–Loreti constant $\beta \approx 1.78723$ , we have $\tau (\beta )=(2-\beta )/(\beta -1)$ . Furthermore, we show that (i) the function $\tau : \beta \mapsto \tau (\beta )$ is left continuous on $(1,2]$ with right-hand limits everywhere, but has countably infinitely many discontinuities; (ii) $\tau $ has no downward jumps, with $\tau (1+)=0$ and $\tau (2)=1/2$ ; and (iii) there exists an open set $O\subset (1,2]$ , whose complement $(1,2]\setminus O$ has zero Hausdorff dimension, such that $\tau $ is real-analytic, convex, and strictly decreasing on each connected component of O. Consequently, the dimension $\dim _{H} K_{\beta }(t)$ is not jointly continuous in $\beta $ and t. Our strategy to find the critical value $\tau (\beta )$ depends on certain substitutions of Farey words and a renormalization scheme from dynamical systems.

Type
Original Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allaart, P. C.. An algebraic approach to entropy plateaus in non-integer base expansions. Discrete Contin. Dyn. Syst. 39(11) (2019), 65076522.CrossRefGoogle Scholar
Allaart, P. C. and Kong, D.. Relative bifurcation sets and the local dimension of univoque bases. Ergod. Th. & Dynam. Sys. 41 (2021), 22412273.CrossRefGoogle Scholar
Allouche, J.-P. and Cosnard, M.. The Komornik–Loreti constant is transcendental. Amer. Math. Monthly 107(5) (2000), 448449.CrossRefGoogle Scholar
Allouche, J.-P. and Shallit, J.. The ubiquitous Prouhet–Thue–Morse sequence. Sequences and Their Applications (Singapore, 1998) (Springer Series in Discrete Mathematics and Theoretical Computer Science). Eds. C. Ding, T. Helleseth and H. Niederreiter. Springer, London, 1999, pp. 116.Google Scholar
Allouche, J.-P. and Shallit, J.. Automatic Sequences. Theory, Applications, Generalizations. Cambridge University Press, Cambridge, 2003.CrossRefGoogle Scholar
Baiocchi, C. and Komornik, V.. Greedy and quasi-greedy expansions in non-integer bases. Preprint, 2007, arXiv:0710.3001v1.Google Scholar
Bunimovich, L. A. and Yurchenko, A.. Where to place a hole to achieve a maximal escape rate. Israel J. Math. 182 (2011), 229252.10.1007/s11856-011-0030-8CrossRefGoogle Scholar
Carminati, C., Isola, S. and Tiozzo, G.. Continued fractions with $\mathrm{SL}\left(2,Z\right)$ -branches: combinatorics and entropy. Trans. Amer. Math. Soc. 370(7) (2018), 49274973.CrossRefGoogle Scholar
Carminati, C. and Tiozzo, G.. The local Hölder exponent for the dimension of invariant subsets of the circle. Ergod. Th. & Dynam. Sys. 37(6) (2017), 18251840.CrossRefGoogle Scholar
Clark, L.. The $\beta$ -transformation with a hole. Discrete Contin. Dyn. Syst. 36(3) (2016), 12491269.CrossRefGoogle Scholar
Daróczy, Z. and Kátai, I.. Univoque sequences. Publ. Math. Debrecen 42(3–4) (1993), 397407.CrossRefGoogle Scholar
de Vries, M. and Komornik, V.. A two-dimensional univoque set. Fund. Math. 212(2) (2011), 175189.CrossRefGoogle Scholar
Demers, M., Wright, P. and Young, L.-S.. Escape rates and physically relevant measures for billiards with small holes. Comm. Math. Phys. 294(2) (2010), 353388.10.1007/s00220-009-0941-yCrossRefGoogle Scholar
Demers, M. F.. Markov extensions for dynamical systems with holes: an application to expanding maps of the interval. Israel J. Math. 146 (2005), 189221.10.1007/BF02773533CrossRefGoogle Scholar
Demers, M. F. and Young, L.-S.. Escape rates and conditionally invariant measures. Nonlinearity 19(2) (2006), 377397.CrossRefGoogle Scholar
Falconer, K.. Fractal Geometry: Mathematical Foundations and Applications. John Wiley & Sons Ltd., Chichester, 1990.Google Scholar
Falconer, K.. Techniques in Fractal Geometry. John Wiley & Sons Ltd., Chichester, 1997.Google Scholar
Glendinning, P. and Sidorov, N.. The doubling map with asymmetrical holes. Ergod. Th. & Dynam. Sys. 35(4) (2015), 12081228.CrossRefGoogle Scholar
Hille, E.. A problem in ‘factorisatio numerorum’. Acta Arith. 2 (1936), 134144.CrossRefGoogle Scholar
Kalle, C., Kong, D., Langeveld, N. and Li, W.. The $\beta$ -transformation with a hole at 0. Ergod. Th. & Dynam. Sys. 40(9) (2020), 24822514.CrossRefGoogle Scholar
Komornik, V. and Loreti, P.. Unique developments in noninteger bases. Amer. Math. Monthly 105 (1998), 636639.CrossRefGoogle Scholar
Kong, D. and Li, W.. Critical base for the unique codings of fat Sierpinski gasket. Nonlinearity 33(9) (2020), 44844511.CrossRefGoogle Scholar
Lind, D. and Marcus, B.. An Introduction to Symbolic Dynamics and Coding. Cambridge University Press, Cambridge, 1995.CrossRefGoogle Scholar
Lothaire, M.. Algebraic Combinatorics on Words (Encyclopedia of Mathematics and Its Applications, 90). Cambridge University Press, Cambridge, 2002.CrossRefGoogle Scholar
Mahler, K.. Lectures on Transcendental Numbers (Lecture Notes in Mathematics, 546). Springer-Verlag, Berlin, 1976.CrossRefGoogle Scholar
Parry, W.. On the $\beta$ -expansions of real numbers. Acta Math. Acad. Sci. Hungar. 11 (1960), 401416.CrossRefGoogle Scholar
Pianigiani, G. and Yorke, J. A.. Expanding maps on sets which are almost invariant. Decay and chaos. Trans. Amer. Math. Soc. 252 (1979), 351366.Google Scholar
Raith, P.. Continuity of the Hausdorff dimension for invariant subsets of interval maps. Acta Math. Univ. Comenian. (N.S.) 63(1) (1994), 3953.Google Scholar
Urbański, M.. On Hausdorff dimension of invariant sets for expanding maps of a circle. Ergod. Th. & Dynam. Sys. 6(2) (1986), 295309.CrossRefGoogle Scholar
Urbański, M.. Invariant subsets of expanding mappings of the circle. Ergod. Th. & Dynam. Sys. 7(4) (1987), 627645.CrossRefGoogle Scholar