Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-22T05:53:13.975Z Has data issue: false hasContentIssue false

7 - Boundary layer and stomatal control over leaf fluxes

Published online by Cambridge University Press:  05 June 2014

Russell Monson
Affiliation:
University of Arizona
Dennis Baldocchi
Affiliation:
University of California, Berkeley
Get access

Summary

The resistances encountered by molecules of carbon dioxide in moving into the leaf from the source in the ambient air to the sink at the sites of reaction in the chloroplasts may be used to describe quantitatively specific anatomical and physiological responses to environment . . . Similarly, the resistances to the transfer of water through the leaf from the source, which can be considered to be at the termination of the xylem, to the sink in the ambient air, first as a liquid and then as a vapour, describe adaptations and responses of the leaf to control water loss . . .

Paul Jarvis (1971)

The quote by Paul Jarvis, which he offered in a synopsis paper concerning leaf diffusive resistances, contains implicit reference to the fact that controls over plant-atmosphere fluxes reflect not only the processes that drive the exchanges of H2O and CO2, but also past evolutionary modification of the leaf form and function. Thus, an understanding of fluxes at the plant and leaf scales requires perspectives on adaptation, in addition to biophysical processes. In fact, recognition that leaf and plant function can be best explained when both of these principles are integrated into a common framework has served as the intellectual cornerstone for the discipline of plant physiological ecology for over four decades. In this chapter we develop this integration with regard to the specific case of leaf processes and their underlying diffusive fluxes. In the next chapter, we will consider explicitly the process of adaptation with regard to leaf function, and the concept of adaptation as an organizing principle from which we can predict patterns of covariance between environmental change and traits that control leaf-atmosphere gas exchanges. Although we will focus on the leaf scale in both chapters, we will also begin to introduce concepts associated with atmospheric pressure gradients, turbulent transport, and eddy diffusivity, all of which will be valuable as we move into future chapters.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×