Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-04-30T11:53:29.369Z Has data issue: false hasContentIssue false

7 - Multiple scattering of light in particulate planetary media

from II - Theory, instrumentation, and laboratory studies

Published online by Cambridge University Press:  05 May 2015

Ludmilla Kolokolova
Affiliation:
University of Maryland, College Park
James Hough
Affiliation:
University of Hertfordshire
Anny-Chantal Levasseur-Regourd
Affiliation:
Université de Paris VI (Pierre et Marie Curie)
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bagnulo, S., Boehnhardt, H., Muinonen, K.et al. (2006). Exploring the surface structure of transneptunian objects and Centaurs with polarimetric FORS1/VLT observations. Astronomy and Astrophysics, 450, 12391248.CrossRefGoogle Scholar
Bagnulo, S., Belskaya, I., Muinonen, K.et al. (2008). Discovery of two distinct polarimetric behaviours of trans-Neptunian objects. Astronomy and Astrophysics, 491, L33L36.CrossRefGoogle Scholar
Barabanenkov, Y. N., Kravtsov, Y. A., Ozrin, V. D., and Saichev, A. I. (1991). II Enhanced Backscattering in Optics. Progress in Optics, 29, 65197.CrossRefGoogle Scholar
Belskaya, I. N., Shevchenko, V. G., Efimov, Yu. S.et al. (2002). Opposition polarimetry and photometry of the low albedo asteroid 419 Aurelia. In Proceedings of Asteroids, Comets, Meteors 2002. Berlin, Germany: ESA Publishing Division, pp. 489491.Google Scholar
Belskaya, I. N., Shevchenko, V. G., Kiselev, N. N.et al. (2003). Opposition polarimetry and photometry of S and E-type asteroids. Icarus, 166, 276284.CrossRefGoogle Scholar
Belskaya, I. N., Shkuratov, Yu. G., Efimov, Yu. S.et al. (2005). The F-type asteroids with small inversion angles of polarization. Icarus, 178, 213221.CrossRefGoogle Scholar
Belskaya, I., Bagnulo, S., Muinonen, K.et al. (2008). Polarimetry of the dwarf planet (136199) Eris. Astronomy and Astrophysics, 479, 265269.CrossRefGoogle Scholar
Belskaya, I. N., Bagnulo, S., Stinson, A.et al. (2012). Polarimetry of transneptunian objects (136472) Makemake and (90482) Orcus. Astronomy and Astrophysics, 547, A101.CrossRefGoogle Scholar
Boehnhardt, H., Bagnulo, S., Muinonen, K.et al. (2004). Surface characterization of 28978 Ixion (2001 KX76). Astronomy and Astrophysics, 415, L21L25.CrossRefGoogle Scholar
Bowell, E., Hapke, B., Domingue, D.et al. (1989). Application of photometric models to asteroids. In R. P. Binzel, T. Gehrels, and Matthews, M. S., eds., Asteroids II. Tucson AZ: University of Arizona Press, pp. 524556.Google Scholar
Chernova, G. P., Lupishko, D. F., and Shevchenko, V. G. (1994). Photometry and polarimetry of asteroid 24 Themis. Kinematika i Fizika Nebesnykh Tel, 10(2), 4549.Google Scholar
de Wolf, D. A. (1971). Electromagnetic reflections from an extended turbulent medium: Cumulative forward-scatter single backscatter approximation. IEEE Transactions on Antennas and Propagation, 19, 254262.CrossRefGoogle Scholar
Dlugach, J. M., Mishchenko, M. I., Liu, L., and Mackowski, D. W. (2011). Numerically exact computer simulations of light scattering by densely packed random particulate media. Journal of Quantitative Spectroscopy and Radiative Transfer, 112, 20682078.CrossRefGoogle Scholar
Dollfus, A., Wolff, M., Geake, J. E., Lupishko, D. F., and Dougherty, L. M. (1989). Photopolarimetry of asteroids. In R. P. Binzel, T. Gehrels, and M. Matthews, eds., Asteroids II. Tucson: University of Arizona Press, pp. 594616.Google Scholar
Ermutlu, M., Muinonen, K., Lumme, K., Lindell, I., and Sihvola, A. (1995). Scattering by a small object close to an interface. III: Buried object. Journal of the Optical Society of America A, 12, 13101315.CrossRefGoogle Scholar
Franklin, F. A. and Cook, A. F. (1965). Optical properties of Saturn’s rings. II. Two-color phase curves of the two bright rings. The Astronomical Journal, 70, 704720.CrossRefGoogle Scholar
Gehrels, T. (1956). Photometric studies of asteroids. V. The light-curve and phase function of 20 Massalia. The Astrophysical Journal, 123, 331338.CrossRefGoogle Scholar
Hapke, B. (1990). Coherent backscatter and the radar characteristics of outer planet satellites. Icarus, 88, 407417.CrossRefGoogle Scholar
Hapke, B. W., Nelson, R. M., and Smythe, W. D. (1993). The opposition effect of the moon — the contribution of coherent backscatter. Science, 260, 509511.CrossRefGoogle ScholarPubMed
Harris, A. W., Young, J. W., Bowell, E.et al. (1989a). Photoelectric observation of asteroids 3, 24, 60, 261, 863. Icarus, 77, 171186.CrossRefGoogle Scholar
Harris, A. W., Young, J. W., Contreiras, L.et al. (1989b). Phase relations of high-albedo asteroids: The unusual opposition brightening of 44 Nysa and 64 Angelina. Icarus, 81, 365374.CrossRefGoogle Scholar
Kimura, H., Kolokolova, L., and Mann, I. (2003). Optical properties of cometary dust. Constraints from numerical studies on light scattering by aggregate particles. Astronomy and Astrophysics, 407, L5L8.CrossRefGoogle Scholar
Kolokolova, L. and Kimura, H. (2010). Effects of electromagnetic interaction in the polarization of light scattered by cometary and other types of cosmic dust. Astronomy and Astrophysics, 513, A40.CrossRefGoogle Scholar
Kolokolova, L. and Mackowski, D. (2012). Polarization of light scattered by large aggregates. Journal of Quantitative Spectroscopy and Radiative Transfer, 113, 25672572.CrossRefGoogle Scholar
Kuga, Y. and Ishimaru, A. (1984). Retroreflectance from a dense distribution of spherical particles. Journal of the Optical Society of America A, 1, 831835.CrossRefGoogle Scholar
Lindell, I. V., Sihvola, A. H., Muinonen, K., and Barber, P. W. (1991). Scattering by a small object close to an interface. I: Exact image theory formulation. Journal of the Optical Society of America A, 8, 472476.CrossRefGoogle Scholar
Lumme, K. and Rahola, J. (1994). Light scattering by porous dust particles in the discrete-dipole approximation. The Astrophysical Journal, 425, 653667.CrossRefGoogle Scholar
Lumme, K. and Rahola, J. (1997). Light scattering by dense clusters of spheres. Icarus, 126, 455469.CrossRefGoogle Scholar
Lumme, K. and Penttilä, A. (2011). Model of light scattering by dust particles in the solar system: Applications to cometary comae and planetary regoliths. Journal of Quantitative Spectroscopy and Radiative Transfer, 112, 16581670.CrossRefGoogle Scholar
Lumme, K. and Rahola, J. (1998). Comparison of light scattering by stochastically rough spheres, best-fit spheroids and spheres. Journal of Quantitative Spectroscopy and Radiative Transfer, 60, 439450.CrossRefGoogle Scholar
Lupishko, D. F., Kiselev, N. N., Chernova, G. P., Shakhovskoj, N. M., and Vasilyev, S. V. (1994). Polarization phase dependences of asteroids 55 Pandora and 704 Interamnia. Kinematika i Fizika Nebesnykh Tel, 10(2), 4044.Google Scholar
Lyot, B. (1929). Recherches sur la polarisation de la lumière des planètes et de quelques substances terrestres. Annales de l'Observatoire de Paris, section de Meudon, 8(1), 1161.Google Scholar
Mackowski, D. W. (1994). Calculation of total cross sections of multiple sphere clusters. Journal of the Optical Society of America A, 11, 28512861.CrossRefGoogle Scholar
Mackowski, D. W. and Mishchenko, M. I. (1996). Calculation of the T-matrix and the scattering matrix for ensembles of spheres. Journal of the Optical Society of America A, 13, 22662278.CrossRefGoogle Scholar
Mackowski, D. W. and Mishchenko, M. I. (2011). A multiple sphere T-matrix FORTRAN code for use on parallel computer clusters. Journal of Quantitative Spectroscopy and Radiative Transfer, 112, 21822192.CrossRefGoogle Scholar
Mackowski, D. W., Kolokolova, L., and Sparks, W. (2011). T-matrix approach to calculating circular polarization of aggregates made of optically active materials. Journal of Quantitative Spectroscopy and Radiative Transfer, 112, 17261732.CrossRefGoogle Scholar
Mishchenko, M. I. (1993). On the nature of the polarization opposition effect exhibited by Saturn’s rings. The Astrophysical Journal, 411, 351361.CrossRefGoogle Scholar
Mishchenko, M. I. and Dlugach, J. M. (1993). Coherent backscatter and the opposition effect for E-type asteroids. Planetary and Space Science, 41, 173181.CrossRefGoogle Scholar
Mishchenko, M. I., Tishkovets, V., and Litvinov, P. (2002). Exact results of the vector theory of coherent backscattering from discrete random media: An overview. In G. Videen and M. Kocifaj, eds., Optics of Cosmic Dust. NATO Science Series, II, Mathematics, Physics and Chemistry, Vol. 79. Dordrecht: Kluwer, pp. 239260.CrossRefGoogle Scholar
Mishchenko, M. I., Travis, L. D., and Lacis, A. A. (2006). Multiple Scattering of Light by Particles. Cambridge University Press.Google Scholar
Mishchenko, M. I., Liu, L., Mackowski, D. W., Cairns, B., and Videen, G. (2007). Multiple scattering by random particulate media: Exact 3D results. Optics Express, 15, 28222836.CrossRefGoogle ScholarPubMed
Mishchenko, M. I., Dlugach, J. M., and Liu, L. (2009a). Azimuthal asymmetry of the coherent backscattering cone: Theoretical results. Physical Review A, 80, 053824.CrossRefGoogle Scholar
Mishchenko, M. I., Dlugach, J. M., Liu, L.et al. (2009b). Direct solutions of the Maxwell equations explain opposition phenomena observed for high-albedo solar system objects. The Astrophysical Journal, 705, L118.CrossRefGoogle Scholar
Mishchenko, M. I., Rosenbush, V. K., Kiselev, N. N.et al. (2010). Polarimetric Remote Sensing of Solar System Objects. Kyiv: Akademperiodyka.CrossRefGoogle Scholar
Muinonen, K. (1989). Electromagnetic scattering by two interacting dipoles. In Proceedings of the 1989 URSI Electromagnetic Theory Symposium. Stockholm, pp. 428430.Google Scholar
Muinonen, K. (1990). Light scattering by inhomogeneous media: Backward enhancement and reversal of polarization. Ph.D. thesis, University of Helsinki, Finland.Google Scholar
Muinonen, K. (1994). Coherent backscattering by solar system dust particles. In A. Milani, M. Di Martino, and A. Cellino, eds., Asteroids, Comets and Meteors 1993. Dordrecht, the Netherlands: Kluwer Academic Publishers, pp. 271296.CrossRefGoogle Scholar
Muinonen, K. (2004). Coherent backscattering of light by complex random media of spherical scatterers: Numerical solution. Waves Random Media, 14(3), 365388.CrossRefGoogle Scholar
Muinonen, K. and Videen, G. (2012). A phenomenological single scatterer for studies of complex particulate media. Journal of Quantitative Spectroscopy and Radiative Transfer, 113, 23852390.CrossRefGoogle Scholar
Muinonen, K., Sihvola, A. H., Lindell, I. V., and Lumme, K. (1991). Scattering by a small object close to an interface. II: Study of backscattering. Journal of the Optical Society of America A, 8, 477482.CrossRefGoogle Scholar
Muinonen, K., Piironen, J., Shkuratov, Yu. G., Ovcharenko, A., and Clark, B. (2002a). Asteroid photometric and polarimetric phase effects. In W. Bottke, R. P. Binzel, A. Cellino, and P. Paolicchi, eds., Asteroids III. Tucson: University of Arizona Press, pp. 123138.CrossRefGoogle Scholar
Muinonen, K., Videen, G., Zubko, E., and Shkuratov, Yu. G. (2002b). Numerical techniques for backscattering by random media. In G. Videen and M. Kocifaj, eds., Optics of Cosmic Dust. NATO Science Series, II. Mathematics, Physics and Chemistry, Vol. 79. Dordrecht: Kluwer, pp. 261282.CrossRefGoogle Scholar
Muinonen, K., Zubko, E., Tyynelä, J., Shkuratov, Yu. G., and Videen, G. (2007). Light scattering by Gaussian random particles with discrete-dipole approximation. Journal of Quantitative Spectroscopy and Radiative Transfer, 106, 360377.CrossRefGoogle Scholar
Muinonen, K., Tyynelä, J., Zubko, E.et al. (2011). Polarization of light backscattered by small particles. Journal of Quantitative Spectroscopy and Radiative Transfer, 112(13), 21932212.CrossRefGoogle Scholar
Muinonen, K., Mishchenko, M. I., Dlugach, J. M.et al. (2012). Coherent backscattering numerically verified for a finite volume of spherical particles. The Astrophysical Journal, 760, 118128.CrossRefGoogle Scholar
Müller, G. (1893). Helligkeitsbestimmungen der grossen Planeten und einiger Asteroiden. Publikationen des Astrophysikalischen Observatoriums zu Potsdam, 30(8), 193389.Google Scholar
Muñoz, O., Volten, H., de Haan, J. F., Vassen, W., and Hovenier, J. W. (2000). Experimental determination of scattering matrices of olivine and Allende meteorite particles. Astronomy and Astrophysics, 360, 777788.Google Scholar
Nousiainen, T. (2009). Optical modeling of mineral dust particles: A review. Journal of Quantitative Spectroscopy and Radiative Transfer, 110, 12611279.CrossRefGoogle Scholar
Okada, Y., Mann, I., Mukai, T., and Köhler, M. (2008). Extended calculation of polarization and intensity of fractal aggregates based on rigorous method for light scattering simulations with numerical orientation averaging. Journal of Quantitative Spectroscopy and Radiative Transfer, 109, 26132627.CrossRefGoogle Scholar
Petrova, E. V. and Tishkovets, V. P. (2011). Light scattering by aggregates of varying porosity and the opposition phenomena observed in the low-albedo particulate media. Journal of Quantitative Spectroscopy and Radiative Transfer, 112, 22262233.CrossRefGoogle Scholar
Petrova, E. V., Jockers, K., and Kiselev, N. N. (2000). Light scattering by aggregates with sizes comparable to the wavelength: An application to cometary dust. Icarus, 148, 526536.CrossRefGoogle Scholar
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1992). Numerical Recipes in Fortran, The Art of Scientific Computing, 2nd edn. Cambridge University Press.Google Scholar
Rosenbush, V., Kiselev, N., Avramchuk, V., and Mishchenko, M. (2002). Photometric and polarimetric opposition phenomena exhibited by solar system bodies. In G. Videen and M. Kocifaj, eds., Optics of Cosmic Dust. NATO Science Series, II. Mathematics, Physics and Chemistry, Vol. 79. Dordrecht: Kluwer, pp. 191224.CrossRefGoogle Scholar
Rosenbush, V. K., Kiselev, N. N., Shevchenko, V. G.et al. (2005). Polarization and brightness opposition effects for the E-type asteroid 64 Angelina. Icarus, 178, 222234.CrossRefGoogle Scholar
Rotundi, A. and Rietmeijer, F. (2008). Carbon in meteoroids: Wild 2 dust analyses. IDPs and Cometary Dust Analogues, Earth, Moon, and Planets, 102, 473483.Google Scholar
Rougier, G. (1933). Photometrie photoelectrique globale de la lune. Annales de 1'Observatoire de Strasbourg, 203339.Google Scholar
Shevchenko, V. G., Krugly, Yu. N., Lupishko, D. F., Harris, A. W., and Chernova, G. P. (1993). Lightcurves and phase relations of asteroid 55 Pandora. Astronomicheskii Vestnik, 27(3), 7580.Google Scholar
Shkuratov, Yu. G. (1988). Diffractional model of the brightness surge of complex structures. Kinematika i Fizika Nebesnykh Tel, 4, 6066.Google Scholar
Shkuratov, Yu. G. (1989). A new mechanism of the negative polarization of light scattered by the surfaces of atmosphereless celestial bodies. Astronomicheskii Vestnik, 23, 176180.Google Scholar
Shkuratov, Yu. G., Muinonen, K., Bowell, E.et al. (1994). A critical review of theoretical models for the negative polarization of light scattered by atmosphereless solar system bodies. Earth Moon Planets, 65, 201246.CrossRefGoogle Scholar
Shkuratov, Y., Ovcharenko, A., Zubko, E.et al. (2002). The opposition effect and negative polarization of structural analogs. Icarus, 159, 396416.CrossRefGoogle Scholar
Shkuratov, Y., Bondarenko, S., Ovcharenko, A.et al. (2006). Comparative studies of the reflectance and degree of linear polarization of particulate surfaces and independently scattering particles. Journal of Quantitative Spectroscopy and Radiative Transfer, 100, 340358.CrossRefGoogle Scholar
Stankevich, D., Istomina, L., Shkuratov, Y., and Videen, G. (2007). The scattering matrix of random media consisting of large opaque spheres calculated using ray tracing and accounting for coherent backscattering enhancement. Journal of Quantitative Spectroscopy and Radiative Transfer, 106, 509519.CrossRefGoogle Scholar
Tedesco, E. F., Taylor, R. C., Drummond, J.et al. (1983). Worldwide photometry and lightcurve observations of 1 Ceres during the 1975–1976 apparition. Icarus, 54, 2329.CrossRefGoogle Scholar
Thompson, D. T. and Lockwood, G. W. (1992). Photoelectric photometry of Europa and Callisto 1976–1991. Journal of Geophysical Research Planets, 97, 1476114772.CrossRefGoogle Scholar
Tishkovets, V. P. and Petrova, E. V. (2013). Light scattering by densely packed systems of particles: Near-field effects. In Light Scattering Reviews, 7. Berlin: Springer, pp. 336.CrossRefGoogle Scholar
Tyynelä, J., Zubko, E., Videen, G., and Muinonen, K. (2007). Interrelating angular scattering characteristics to internal electric fields for wavelength-scale spherical particles. Journal of Quantitative Spectroscopy and Radiative Transfer, 106, 520534.CrossRefGoogle Scholar
Tyynelä, J., Muinonen, K., Zubko, E., and Videen, G. (2008). Interrelating scattering characteristics to internal electric fields for Gaussian-random-sphere particles. Journal of Quantitative Spectroscopy and Radiative Transfer, 109, 22072218.CrossRefGoogle Scholar
Tyynelä, J., Zubko, E., Muinonen, K., and Videen, G. (2010). Interpretation of negative polarization at intermediate scattering angles. Applied Optics, 49, 52845296.CrossRefGoogle ScholarPubMed
van Albada, M. P. and Lagendijk, A. (1985). Observation of weak localization of light in a random medium. Physical Review Letters, 55, 26922695.CrossRefGoogle Scholar
van Albada, M. P., van der Mark, M. B., and Lagendijk, A. (1988). Polarisation effects in weak localisation of light. Journal of Physics D: Applied Physics, 21, S28S31.CrossRefGoogle Scholar
Videen, G. and Kocifaj, M., eds. (2002). Optics of Cosmic Dust. Dordrecht: Kluwer.CrossRefGoogle Scholar
Virkki, A., Muinonen, K., and Penttilä, A. (2013). Circular polarization of spherical-particle aggregates at backscattering. Journal of Quantitative Spectroscopy and Radiative Transfer, 126, 150159.CrossRefGoogle Scholar
von Seeliger, H. (1887). Zur Theorie der Beleuchtung der grossen Planeten, insbesondere des Saturn. Abh. Bayer. Akad. Wiss. Math. Naturwiss. Kl. 16, 405516.Google Scholar
Waterman, P. C. (1965). Matrix formulation of electromagnetic scattering. Proceedings of the IEEE, 53(8), 805812.CrossRefGoogle Scholar
Watson, K. M. (1969). Multiple scattering of electromagnetic waves in an underdense plasma. Journal of Mathematical Physics, 10, 688702.CrossRefGoogle Scholar
Wolf, P.-E. and Maret, G. (1985). Weak localization and coherent backscattering of photons in disordered media. Physical Review Letters, 55, 26962699.CrossRefGoogle ScholarPubMed
Yurkin, M. A., Maltsev, V. P., and Hoekstra, A. G. (2007). The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength. Journal of Quantitative Spectroscopy and Radiative Transfer, 106, 546557.CrossRefGoogle Scholar
Zellner, B. and Gradie, J. (1976). Minor planets and related objects. XX. Polarimetric evidence for the albedos and compositions of 94 asteroids. The Astronomical Journal, 81, 262280.CrossRefGoogle Scholar
Zellner, B., Gehrels, T., and Gradie, J. (1974). Minor planets and related objects. XVI. Polarimetric diameters. The Astronomical Journal, 79, 11001110.CrossRefGoogle Scholar
Zubko, E., Muinonen, K., Shkuratov, Yu. G., Videen, G., and Nousiainen, T. (2007). Scattering of light by roughened Gaussian random particles. Journal of Quantitative Spectroscopy and Radiative Transfer, 106, 604615.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×