Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-04-30T19:19:18.378Z Has data issue: false hasContentIssue false

4 - Instrumentation

from II - Theory, instrumentation, and laboratory studies

Published online by Cambridge University Press:  05 May 2015

Ludmilla Kolokolova
Affiliation:
University of Maryland, College Park
James Hough
Affiliation:
University of Hertfordshire
Anny-Chantal Levasseur-Regourd
Affiliation:
Université de Paris VI (Pierre et Marie Curie)
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aitken, D. K. and Hough, J. H. (2001). Spectral modulation, or ripple in retardation plates for linear and circular polarization. Publications of the Astronomical Society of the Pacific, 113(788), 13001305.CrossRefGoogle Scholar
Anan, T., Ichimoto, K., Oi, A.et al. (2012). Developments of the wideband spectropolarimeter of the Domeless Solar Telescope at Hida Observatory. In Ground-based and Airborne Instrumentation for Astronomy IV. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 8446. Bellingham WA: International Society for Optics and Photonics.Google Scholar
Appenzeller, I., Fricke, K., Fürtig, W.et al. (1998). Successful commissioning of FORS1 – the first optical instrument on the VLT. The Messenger, 94, 16.Google Scholar
Azzam, R. M. and Bashara, N. M. (1987). Ellipsometry and Polarized Light. North Holland: Elsevier Science Publishing Co., Inc.CrossRefGoogle Scholar
Bagnulo, S., Landolfi, M., Landstreet, J. D.et al. (2009). Stellar spectropolarimetry with retarder waveplate and beam splitter devices. Publications of the Astronomical Society of the Pacific, 121, 9931015.CrossRefGoogle Scholar
Bagnulo, S., Landstreet, J. D., Fossati, L., and Kochukhov, O. (2012). Magnetic field measurements and their uncertainties: The FORS1 legacy. Astronomy and Astrophysics, 538, id. A129, 22 pp.CrossRefGoogle Scholar
Bagnulo, S., Fossati, L., Kochukhov, O., and Landstreet, J. D. (2013). The importance of non-photon noise in stellar spectropolarimetry. The spurious detection of a non-existing magnetic field in the A0 supergiant HD 92207. Astronomy and Astrophysics, 559, id. A103, 10 pp.CrossRefGoogle Scholar
Bailey, J., Lucas, P. W., and Hough, J. H. (2010). The linear polarization of nearby bright stars measured at the parts per million level. Monthly Notices of the Royal Astronomical Society, 405(4), 25702578.Google Scholar
Barrick, G., Benedict, T., and Sabin, D. (2010). Correcting polarization crosstalk in the ESPaDOnS spectro-polarimeter. In SPIE Astronomical Telescopes and Instrumentation: Observational Frontiers of Astronomy for the New Decade. Bellingham WA: International Society for Optics and Photonics, p. 77354C.Google Scholar
Batcheldor, D., Schneider, G., Hines, D. C. et al. (2009). High-accuracy near-infrared imaging polarimetry with NICMOS. Publications of the Astronomical Society of the Pacific, 121(876), 153166.CrossRefGoogle Scholar
Baur, T. G. (2003). A new type of beam-splitting polarizer cube. In Optical Science and Technology, SPIE’s 48th Annual Meeting. Bellingham WA: International Society for Optics and Photonics, pp. 135141.Google Scholar
Beck, C., Schmidt, W., Kentischer, T., and Elmore, D. (2005). Polarimetric Littrow Spectrograph – Instrument Calibration and First Measurements. Astronomy and Astrophysics, 437, 11591167.CrossRefGoogle Scholar
Beckers, J. M. (1971). Achromatic linear retarders. Applied Optics, 10(4), 973975.CrossRefGoogle ScholarPubMed
Berreman, D. W. (1972). Optics in stratified and anisotropic media: 4 × 4-matrix formulation. Journal of the Optical Society of America, 62(4), 502510.CrossRefGoogle Scholar
Brink, J. D., Buckley, D. A. H., Nordsieck, K. H., and Potter, S. B. (2010). Spectropolarimetry with the SALT RSS. In Ground-based and Airborne Instrumentation for Astronomy III. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 7735. Bellingham WA: International Society for Optics and Photonics.Google Scholar
Cao, W., Ahn, K., Goode, P. R.et al. (2011). The new solar telescope in Big Bear: Polarimetry II. In Solar Polarization 6. Astronomical Society of the Pacific Conference Series, Vol. 437. San Francisco, CA: Astronomical Society of the Pacific, p. 345.Google Scholar
Capobianco, G., Fineschi, S., Massone, G.et al. (2012). Electro-optical polarimeters for ground-based and space-based observations of the solar K-corona. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 8450. Bellingham WA: International Society for Optics and Photonics.Google Scholar
Chipman, R. A. (1989). Polarization analysis of optical systems. Optical Engineering, 28(2), 280290280290.Google Scholar
Clarke, D. (2005). Effects in polarimetry of interference within wave plates. Astronomy and Astrophysics, 434, 377384.CrossRefGoogle Scholar
Clarke, D. (2010). Stellar Polarimetry. New York: Wiley Publ., doi: 10.1002/9783527628322.Google Scholar
Clemens, D. P., Sarcia, D., Grabau, A.et al. (2007). Mimir: A near-infrared wide-field imager, spectrometer and polarimeter. Publications of the Astronomical Society of the Pacific, 119, 13851402.CrossRefGoogle Scholar
Clemens, D. P., Pinnick, A. F., and Pavel, M. D. (2012). Polarimetric calibration of Mimir and the Galactic Plane Infrared Polarization Survey (GPIPS). The Astrophysical Journal Supplement Series, 200, 20.CrossRefGoogle Scholar
Collados, M., Lagg, A., Diaz Garcia, J. J.et al. (2007). Tenerife infrared polarimeter II. The Physics of Chromospheric Plasmas, 368, 611.Google Scholar
Collados, M., Lopez, R., Paez, E.et al. (2012). GRIS: The GREGOR infrared spectrograph. Astronomische Nachrichten, 333, 872.CrossRefGoogle Scholar
Collins, P., Kyne, G., Lara, D.et al. (2013). The Galway astronomical Stokes polarimeter: An all-Stokes optical polarimeter with ultra-high time resolution. Experimental Astronomy, 36, 479503.CrossRefGoogle Scholar
Covino, S., Molinari, E., Bruno, P.et al. (2013). PAOLO: A Polarimeter Add-On for the LRS Optics at a Nasmyth focus of the TNG. Astronomische Nachrichten, 335(2), 117.CrossRefGoogle Scholar
Crescenzio, G., Fineschi, S., Capobianco, G.et al. (2012). Imaging polarimetry with the METIS coronagraph of the Solar Orbiter mission. In Space Telescopes and Instrumentation 2012: Ultraviolet to Gamma Ray. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 8443. Bellingham WA: International Society for Optics and Photonics.Google Scholar
de Wijn, A. G., Bethge, C., Tomczyk, S., and McIntosh, S. (2012a). The chromosphere and prominence magnetometer. In Ground-based and Airborne Instrumentation for Astronomy IV. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 8446. Bellingham WA: International Society for Optics and Photonics.Google Scholar
de Wijn, A. G., Burkepile, J. T., Tomczyk, S.et al. (2012b). Stray light and polarimetry considerations for the COSMO K-Coronagraph. In Astronomical Telescopes + Instrumentation. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 8444. Bellingham WA: International Society for Optics and Photonics.Google Scholar
del Toro Iniesta, J. C. and Collados, M. (2000). Applied Optics, 39, 1637.CrossRefGoogle Scholar
del Toro Iniesta, J. C. and Martínez Pillet, V. (2012). Assessing the behavior of modern solar magnetographs and spectropolarimeters. The Astrophysical Journal Supplement, 201, id. 22, 9 pp.CrossRefGoogle Scholar
Delacroix, C., Absil, O., Forsberg, P.et al. (2013). Laboratory demonstration of a mid-infrared AGPM vector vortex coronagraph. Astronomy and Astrophysics, 553, A98.CrossRefGoogle Scholar
Deschamps, P. Y., Bréon, F. M., Leroy, M.et al. (1994). The POLDER mission: Instrument characteristics and scientific objectives. IEEE Transactions on Geoscience and Remote Sensing, 32(3), 598615.CrossRefGoogle Scholar
Diner, D., Davis, A., Hancock, B.et al. (2010). First results from a dual photoelastic-modulator-based polarimetric camera. Applied Optics, 49, 29292946.CrossRefGoogle ScholarPubMed
Donati, J.-F. (2003). ESPaDOnS: An Echelle spectropolarimetric device for the observation of stars at CFHT. In ASP Conference Proceedings, Vol. 307. San Francisco: Astronomical Society of the Pacific, p. 41.Google Scholar
Donati, J.-F., Catala, C., Landstreet, J. D., and Petit, P. (2006). ESPaDOnS: The new generation stellar spectro-polarimeter. Performances and first results. In Astronomical Society of the Pacific Conference Series, Vol. 358. San Francisco, CA: Astronomical Society of the Pacific, p. 362.Google Scholar
Fossati, L., Bagnulo, S., Mason, E., and Degl’Innocenti, E. L. (2007). Standard stars for linear polarization observed with FORS1. In Astronomical Society of the Pacific Conference Series, Vol. 364. San Francisco: Astronomical Society of the Pacific.Google Scholar
Gandorfer, A., Solanki, S. K., Woch, J.et al. (2011). The Solar Orbiter Mission and its Polarimetric and Helioseismic Imager (SO/PHI). Journal of Physics Conference Series, 271, 012086.CrossRefGoogle Scholar
Gehrels, T., Coffeen, D., Tomasko, M.et al. (1974). The imaging photopolarimeter experiment on Pioneer 10. Science, 183(4122), 318320.CrossRefGoogle ScholarPubMed
Gil-Hutton, R. and Benavidez, P. (2003). Southern stars that can be used as unpolarized standards. Monthly Notices of the Royal Astronomical Society, 345(1), 9799.CrossRefGoogle Scholar
Goldstein, D. (2011). Polarized Light, 3rd edn. New York: Marcel Dekker.Google Scholar
Goode, P. R., Cao, W., Ahn, K., Gorceix, N., and Coulter, R. (2011). The new solar telescope in Big Bear: Polarimetry II. In Solar Polarization 6. Astronomical Society of the Pacific Conference Series, Vol. 437. San Francisco CA: Astronomical Society of the Pacific, p. 341.Google Scholar
Goodrich, R. and Cohen, M. (2003). LRIS imaging spectropolarimeter at the W.M. Keck Observatory. Polarimetry in Astronomy, 4843, 146155.CrossRefGoogle Scholar
Guimond, S. and Elmore, D. (2004). Optical design and engineering: Polarizing view. oemagazine, May, doi: 10.1117/2.5200405.0007, SPIE. Available online at http://spie.org/x17069.xml (accessed December 11, 2014).Google Scholar
Hale, P. D. and Day, G. W. (1988). Stability of birefringent linear retarders (waveplates). Applied Optics, 27, 51465153.CrossRefGoogle ScholarPubMed
Harrington, D. M. and Kuhn, J. R. (2008). Spectropolarimetric observations of Herbig Ae/Be Stars. I. HiVIS spectropolarimetric calibration and reduction techniques. Publications of the Astronomical Society of the Pacific, 120, 89117.CrossRefGoogle Scholar
Harrington, D. M., Kuhn, J. R., and Whitman, K. (2006). The new HiVIS spectropolarimeter and spectropolarimetric calibration of the AEOS telescope. Publications of the Astronomical Society of the Pacific, 118, 845859.CrossRefGoogle Scholar
Harrington, D. M., Kuhn, J. R., Sennhauser, C., Messersmith, E. J., and Thornton, R. J. (2010). Achromatizing a liquid-crystal spectropolarimeter: Retardance vs. Stokes-based calibration of HiVIS. Publications of the Astronomical Society of the Pacific, 122(890), 420438.CrossRefGoogle Scholar
Harrington, D. M., Kuhn, J. R., and Hall, S. (2011). Deriving telescope Mueller matrices using daytime sky polarization observations. Publications of the Astronomical Society of the Pacific, 123(905), 799811.CrossRefGoogle Scholar
Hinkley, S., Oppenheimer, B. R., Soummer, R.et al. (2009). Speckle suppression through dual imaging polarimetry, and a ground-based image of the HR 4796A circumstellar disk. The Astrophysical Journal, 701(1), 804.CrossRefGoogle Scholar
Hodapp, K. W., Suzuki, R., Tamura, M.et al. (2008). HiCIAO: The Subaru Telescope’s new high-contrast coronographic imager for adaptive optics. In Ground-based and Airborne Instrumentation for Astronomy II. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 7014. Bellingham WA: International Society for Optics and Photonics.Google Scholar
Hou, J., de Wijn, A. G., and Tomczyk, S. (2013). Design and measurement of the Stokes polarimeter for the COSMO K-coronagraph. The Astrophysical Journal, 774, 85.CrossRefGoogle Scholar
Hough, J., Lucas, P. W., Bailey, J., and Tamura, M. (2007). Low polarization standards. The Future of Photometric, Spectrophotometric, and Polarimetric Standardization. ASP Conference Series, Vol. 364. San Francisco, CA: Astronomical Society of the Pacific.Google Scholar
Hough, J. H., Lucas, P. W., Bailey, J. A. et al. (2006). PlanetPol: A very high sensitivity polarimeter. Publications of the Astronomical Society of the Pacific, 118(847), 13021318.CrossRefGoogle Scholar
Ichimoto, K., Lites, B. W., Elmore, D.et al. (2008). Polarization calibration of the solar optical telescope onboard Hinode. Solar Physics, 249, 233261.CrossRefGoogle Scholar
Ilyin, I., Strassmeier, K. G., Woche, M., Dionies, F., and Di Varano, I. (2011). On the design of the PEPSI spectropolarimeter for the LBT. Astronomische Nachrichten, 332, 753.CrossRefGoogle Scholar
Jaeggli, S. A., Lin, H., Mickey, D. L.et al. (2010). FIRS: A new instrument for photospheric and chromospheric studies at the DST. Memorie della Societa Astronomica Italiana, 81, 763.Google Scholar
Kanbach, G., Stefanescu, A., Duscha, S.et al. (2008). OPTIMA: A high time resolution optical photo-polarimeter. Astrophysics and Space Science Library, 351, 153.CrossRefGoogle Scholar
Kandori, R., Kusakabe, N., Tamura, M.et al. (2006). SIRPOL: A JHKs-simultaneous imaging polarimeter for the IRSF 1.4-m telescope. In Ground-based and Airborne Instrumentation for Astronomy. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 6269. Bellingham WA: International Society for Optics and Photonics.Google Scholar
Kashikawa, N., Aoki, K., Asai, R.et al. (2002). FOCAS: The Faint Object Camera and Spectrograph for the Subaru Telescope. Publications of the Astronomical Society of Japan, 54, 819832.CrossRefGoogle Scholar
Käufl, H.-U., Moorwood, A. F. M., and Pirard, J.-F. (2003). Spectropolarimetry with CRIRES: Technical aspects and scientific potential. Polarimetry in Astronomy, 4843, 223232.CrossRefGoogle Scholar
Kawabata, K. S., Nagae, O., Chiyonobu, S.et al. (2008). Wide-field one-shot optical polarimeter: HOWPol. In Ground-based and Airborne Instrumentation for Astronomy II. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 7014. Bellingham WA: International Society for Optics and Photonics.Google Scholar
Keller, C. U. (1996). Recent progress in imaging polarimetry. In Solar Polarization. The Netherlands: Springer, pp. 243252.CrossRefGoogle Scholar
Keller, C. U. (2002). Instrumentation for astrophysical spectropolarimetry. In Astrophysical Spectropolarimetry, Vol. 1. Cambridge University Press, pp. 303354.Google Scholar
Keller, C. U., Harvey, J. W., and Solis Team (2003). The SOLIS Vector-Spectromagnetograph. Solar Polarization, 307, 13.Google Scholar
King, O. G., Blinov, D., Ramaprakash, A. N.et al. (2013). The RoboPol Pipeline and Control System. Monthly Notices of the Royal Astronomical Society, 442(2), 17061717.CrossRefGoogle Scholar
Komanduri, R. K., Lawler, K. F., and Escuti, M. J. (2013). Multi-twist retarders: broadband retardation control using self-aligning reactive liquid crystal layers. Optics Express, 21, 404.CrossRefGoogle ScholarPubMed
Korablev, O., Fedorova, A., Bertaux, J.-L.et al. (2012). SPICAV IR acousto-optic spectrometer experiment on Venus Express. Planetary and Space Science, 65, 3857.CrossRefGoogle Scholar
Ksanfomaliti, L. V., Moroz, V. I., and Dollfus, A. (1975). Polarimetry experiment on board Mars 5. Kosmicheskie Issledovaniia, 13, 9298.Google Scholar
Kuhn, J. R., Balasubramaniam, K. S., Kopp, G.et al. (1994). Removing instrumental polarization from infrared solar polarimetric observations. Solar Physics, 153(1–2), 143155.CrossRefGoogle Scholar
Kuhn, J. R., Potter, D., and Parise, B. (2001). Imaging polarimetric observations of a new circumstellar disk system. The Astrophysical Journal Letters, 553(2), L189.CrossRefGoogle Scholar
Langlois, M., Dohlen, K., Augereau, J.-C.et al. (2010). High contrast imaging with IRDIS near infrared polarimeter. In Ground-based and Airborne Instrumentation for Astronomy III. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 7735. Bellingham WA: International Society for Optics and Photonics.Google Scholar
Leroy, J. L. (2000). Polarization of Light and Astronomical Observation. Vol. 4 of Advances in Astronomy and Astrophysics. Amsterdam: Gordon and Breach Science.Google Scholar
Levasseur-Regourd, A. C., Bertaux, J. L., Dumont, R.et al. (1986). Optical probing of comet Halley from the Giotto spacecraft. Nature, 321, 341344.CrossRefGoogle Scholar
Levasseur-Regourd, A. C., McBride, N., Hadamcik, E., and Fulle, M. (1999). Similarities between in situ measurements of local dust scattering and dust flux impact data within the coma of 1P/Halley. Astronomy and Astrophysics, 348, 636641.Google Scholar
Lillie, C. F., Hord, C. W., Pang, K., Coffeen, D. L., and Hansen, J. E. (1977). The Voyager mission photopolarimeter experiment. Space Science Reviews, 21(2), 159181.CrossRefGoogle Scholar
Magalhaes, A. M., de Oliveiraa, C. M., Carciofia, A.et al. (2012). South Pol: Revealing the polarized southern sky. American Institute of Physics Conference Series, 1429, 244247.Google Scholar
Mahler, A. B., McClain, S., and Chipman, R. (2011). Achromatic athermalized retarder fabrication. Applied Optics, 50(5), 755765.CrossRefGoogle ScholarPubMed
Manchado, A., Fuentes, F. J., Prada, F.et al. (1998). LIRIS: A long-slit intermediate-resolution infrared spectrograph for the WHT. Infrared Astronomical Instrumentation, 3354, 448455.CrossRefGoogle Scholar
Martinez Pillet, V., del Toro Iniesta, J. C., Alvarez-Herrero, A.et al. (2011). The Imaging Magnetograph eXperiment (IMaX) for the Sunrise Balloon-Borne Solar Observatory. Solar Physics, 268, 57102.CrossRefGoogle Scholar
Masiero, J., Hodapp, K., Harrington, D., and Lin, H. (2007). Commissioning of the dual-beam imaging polarimeter for the University of Hawaii 88 inch telescope. Publications of the Astronomical Society of the Pacific, 119, 11261132.CrossRefGoogle Scholar
Mein, P., Mein, N., and Bommier, V. (2009). Fast imaging spectroscopy with MSDP spectrometers. Vector magnetic maps with THEMIS/MSDP. Astronomy and Astrophysics, 507, 531539.CrossRefGoogle Scholar
Mishchenko, M. I., Rosenbush, V. K., Kiselev, N. N.et al. (2010). Polarimetric remote sensing of solar system objects. “Akademperiodyka,” Kyiv, ArXiv e-prints arXiv:1010.1171.CrossRefGoogle Scholar
Monin, D., Bohlender, D., Hardy, T., Saddlemyer, L., and Fletcher, M. (2012). An inexpensive liquid crystal spectropolarimeter for the Dominion Astrophysical Observatory Plaskett Telescope. Publications of the Astronomical Society of the Pacific, 124(914), 329342.CrossRefGoogle Scholar
Moorwood, A., Cuby, J.-G., and Lidman, C. (1998). SOFI sees first light at the NTT. The Messenger, 91, 913.Google Scholar
Moorwood, A., Cuby, J.-G., Ballester, P.et al. (1999). ISAAC at the VLT. The Messenger, 95, 15.Google Scholar
Nordsieck, K. H. (1974). A simple polarimetric system for the Lick Observatory Image-Tube Scanner. Publications of the Astronomical Society of the Pacific, 86, 324329.CrossRefGoogle Scholar
Nordsieck, K. H., Jaehnig, K. P., Burgh, E. B.et al. (2003). Instrumentation for high-resolution spectropolarimetry in the visible and far-ultraviolet. Polarimetry in Astronomy, 4843, 170179.CrossRefGoogle Scholar
Oh, C. and Escuti, M. J. (2008). Achromatic diffraction from polarization gratings with high efficiency. Optics Letters, 33, 2287–2289.CrossRefGoogle ScholarPubMed
Oka, K. and Kato, T. (1999). Spectroscopic polarimetry with a channeled spectrum. Optics Letters, 24(21), 14751477.CrossRefGoogle ScholarPubMed
Oke, J. B., Cohen, J. G., Carr, M. M.et al. (1994). Low-resolution imaging spectrometer for the Keck Telescope. In 1994 Symposium on Astronomical Telescopes and Instrumentation for the 21st Century. Bellingham WA: International Society for Optics and Photonics, pp. 178184.Google Scholar
Packham, C. and Jones, T. J. (2008). MMT-Pol: An adaptive optics optimized 1–5μm polarimeter. In Astronomical Telescopes and Instrumentation: Synergies Between Ground and Space. Bellingham WA: International Society for Optics and Photonics, p. 70145F.Google Scholar
Packham, C., Telesco, C. M., Hough, J. H., and Ftaclas, C. (2005). CanariCam: The multi-mode mid-IR instrument for the GTC. Revista Mexicana de Astronomia y Astrofisica Conference Series, 24, 712.Google Scholar
Packham, C., Escuti, M., Ginn, J.et al. (2010). Polarization gratings: A novel polarimetric component for astronomical instruments. Publications of the Astronomical Society of the Pacific, 122(898), 14711482.CrossRefGoogle Scholar
Packham, C., Jones, T. J., Warner, C.et al. (2012). Commissioning results of MMT-POL: The 1–5um imaging polarimeter leveraged from the AO secondary of the 6.5m MMT. In Ground-based and Airborne Instrumentation for Astronomy IV. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 8446. Bellingham WA: International Society for Optics and Photonics.Google Scholar
Pancharatnam, S. (1955). Achromatic combinations of birefringent plates. Part II. An achromatic quarter-wave plate. Proceedings of the Indian Academy of Science, A41, 137144.CrossRefGoogle Scholar
Pares, L., Donati, J.-F., Dupieux, M.et al. (2012). Front end of the SPIRou spectropolarimeter for Canada-France Hawaii Telescope. In Ground-based and Airborne Instrumentation for Astronomy IV. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 8446. Bellingham WA: International Society for Optics and Photonics.Google Scholar
Patat, F. and Romaniello, M. (2006). Error analysis for dual-beam optical linear polarimetry. Publications of the Astronomical Society of the Pacific, 118, 146161.CrossRefGoogle Scholar
Pellicori, S. F., Russell, E. E., and Watts, L. A. (1973). Pioneer imaging photopolarimeter optical system. Applied Optics, 12(6), 12461258.CrossRefGoogle ScholarPubMed
Peralta, R. J., Nardell, C., Cairns, B.et al. (2007). Aerosol polarimetry sensor for the Glory Mission. In International Symposium on Multispectral Image Processing and Pattern Recognition. Bellingham WA: International Society for Optics and Photonics, p. 67865L.Google Scholar
Pereyra, A., Rodrigues, C.V., and Martioli, E. (2015). Measuring the continuum polarization with ESPaDOnSAstronomy and Astrophysics, 573, id. A133, 13 pp.CrossRefGoogle Scholar
Perrin, M. D., Graham, J. R., and Lloyd, J. P. (2008). The IRCAL polarimeter: Design, calibration, and data reduction for an adaptive optics imaging polarimeter. Publications of the Astronomical Society of the Pacific, 120, 555570.CrossRefGoogle Scholar
Perrin, M. D., Graham, J. R., Larkin, J. E.et al. (2010). Imaging polarimetry with the Gemini Planet Imager. In B. Ellerbroek, ed., Imaging Polarimetry with the Gemini Planet Imager. Adaptive Optics Systems II. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 7736. Bellingham WA: International Society for Optics and Photonics.Google Scholar
Persh, S., Shaham, Y. J., Benami, O.et al. (2010). Ground performance measurements of the Glory aerosol polarimetry sensor. In SPIE Optical Engineering + Applications. Bellingham WA: International Society for Optics and Photonics, p. 780703.Google Scholar
Piirola, V. (1973). A double image chopping polarimeter. Astronomy and Astrophysics, 27, 383388.Google Scholar
Potter, S., Buckley, D., O’Donoghue, D.et al. (2008). A new two channel high-speed photo-polarimeter (HIPPO) for the SAAO. In Ground-based and Airborne Instrumentation for Astronomy II. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 7014. Bellingham WA: International Society for Optics and Photonics.Google Scholar
Povel, H. P. (1995). Imaging Stokes polarimetry with piezoelastic modulators and charge-coupled-device image sensors. Optical Engineering, 34(7), 18701878.CrossRefGoogle Scholar
Povel, H. P., Keller, C. U., and Yadigaroglu, I. A. (1994). Two-dimensional polarimeter with a charge-coupled-device image sensor and a piezoelastic modulator. Applied Optics, 33(19), 42544260.CrossRefGoogle Scholar
Puschmann, K. G., Denker, C., Kneer, F.et al. (2012). The GREGOR Fabry-Perot Interferometer. Astronomische Nachrichten, 333, 880.CrossRefGoogle Scholar
Ramelli, R., Balemi, S., Bianda, M.et al. (2010). ZIMPOL-3: A powerful solar polarimeter. In SPIE Astronomical Telescopes and Instrumentation: Observational Frontiers of Astronomy for the New Decade. Bellingham WA: International Society for Optics and Photonics, p. 77351Y.Google Scholar
Ramstedt, S., Maercker, M., Olofsson, G., Olofsson, H., and Schöier, F. L. (2011). Imaging the circumstellar dust around AGB stars with PolCor. Astronomy and Astrophysics, 531, id. A148, 15 pp.CrossRefGoogle Scholar
Rodenhuis, M., Canovas, H., Jeffers, S. V.et al. (2012). The extreme polarimeter: Design, performance, first results and upgrades. In SPIE Astronomical Telescopes + Instrumentation. Bellingham WA: International Society for Optics and Photonics, p. 84469I.Google Scholar
Rodrigues, C. V., Taylor, K., Jablonski, F. J.et al. (2012). Concept of SPARC4: A simultaneous polarimeter and rapid camera in 4 bands. In Ground-based and Airborne Instrumentation for Astronomy IV. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 8446. Bellingham WA: International Society for Optics and Photonics.Google Scholar
Roelfsema, R., Schmid, H. M., Pragt, J.et al. (2010). The ZIMPOL high-contrast imaging polarimeter for SPHERE: Design, manufacturing, and testing. In Ground-based and Airborne Instrumentation for Astronomy III. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 7735. Bellingham WA: International Society for Optics and Photonics.Google Scholar
Russell, E. E., Watts, L. A., Pellicori, S. F., and Coffeen, D. L. (1977). Orbiter cloud photopolarimeter for the Pioneer Venus mission. In 21st Annual Technical Symposium. Bellingham WA: International Society for Optics and Photonics, pp. 2844.Google Scholar
Russell, E. E., Brown, F. G., Chandos, R. A.et al. (1992). Galileo photopolarimeter/radiometer experiment. Space Science Reviews, 60, 531563, doi:10.1007/BF00216867.CrossRefGoogle Scholar
Samoĭlov, A.V., Samoĭlov, V. S., Klimov, A. S., and Oberemok, E. A. (2009). Properties of multicomponent achromatic and superachromatic zero-order wave plates. The Journal of Optical Technology, 76, 312315.CrossRefGoogle Scholar
Sanchez Almeida, J. and Martinez Pillet, V. (1992). Instrumental polarization in the focal plane of telescopes. Astronomy and Astrophysics, 260, 543555.Google Scholar
Saviane, I., Piirola, V., Bagnulo, S.et al. (2007). Circular polarimetry now offered at EFOSC2. The Messenger, 129, 1417.Google Scholar
Scherrer, P. H., Bogart, R. S., Bush, R. I.et al. (1995). The solar oscillations investigation-Michelson Doppler imager. Solar Physics, 162(1–2), 129188.CrossRefGoogle Scholar
Schmid, H. M., Downing, M., Roelfsema, R.et al. (2012). Tests of the demodulating CCDs for the SPHERE/ZIMPOL imaging polarimeter. In SPIE Astronomical Telescopes+ Instrumentation. Bellingham WA: International Society for Optics and Photonics, p. 84468Y.Google Scholar
Schmidt, W., Beck, C., Kentischer, T., Elmore, D., and Lites, B. (2003). POLIS: A spectropolarimeter for the VTT and for GREGOR. Astronomische Nachrichten, 324, 300301.CrossRefGoogle Scholar
Schou, J., Scherrer, P. H., Bush, R. I.et al. (2012a). Design and ground calibration of the helioseismic and magnetic imager (HMI) instrument on the Solar Dynamics Observatory (SDO). In The Solar Dynamics Observatory. New York: Springer, pp. 229259.Google Scholar
Schou, J., Borrero, J. M., Norton, A. A.et al. (2012b). Polarization calibration of the helioseismic and magnetic imager (HMI) onboard the Solar Dynamics Observatory (SDO). Solar Physics, 275(1–2), 327355.CrossRefGoogle Scholar
Seifert, W. and Furtig, W. (1994). Polarization optics for FORS. Astronomische Gesellschaft Abstract Series, 10, 240.Google Scholar
Semel, M. (2003). Spectropolarimetry and polarization-dependent fringes. Astronomy and Astrophysics, 401, 114.CrossRefGoogle Scholar
Semel, M., Donati, J-F., and Rees, D. E. (1993). Zeeman-Doppler imaging of active stars. 3: Instrumental and technical considerations. Astronomy and Astrophysics, 278, 231237.Google Scholar
Snik, F., Karalidi, T., and Keller, C. U. (2009). Spectral modulation for full linear polarimetry. Applied Optics, 48(7), 13371346.CrossRefGoogle ScholarPubMed
Snik, F., Rietjens, J. H., Van Harten, G.et al. (2010). SPEX: The spectropolarimeter for planetary exploration. In SPIE Astronomical Telescopes and Instrumentation: Observational Frontiers of Astronomy for the New Decade. Bellingham WA: International Society for Optics and Photonics, p. 77311B.Google Scholar
Snik, F., Kochukhov, O., Piskunov, N.et al. (2011). The HARPS Polarimeter. Solar Polarization 6. Proceedings of a conference held in Maui, Hawaii, United States on May 30 to June 4, 2010. (Ed. J. R. Kuhn, D. M. Harrington, H. Lin, S. V. Berdyugina, J. Trujillo-Bueno, S. L. Keil, and T. Rimmele.) San Francisco, CA: Astronomical Society of the Pacific, p. 237.Google Scholar
Snik, F. and Keller, C. U. (2013). Astronomical polarimetry: Polarized views of stars and planets. In Oswalt, T.D., Bond, H., et al., eds., Planets, Stars and Stellar Systems. New York: Springer, pp. 175221.CrossRefGoogle Scholar
Socas-Navarro, H., Elmore, D., Pietarila, A.et al. (2006). Spinor: Visible and infrared spectro-polarimetry at the National Solar Observatory. Solar Physics, 235, 5573.CrossRefGoogle Scholar
Socas-Navarro, H., Elmore, D., Asensio-Ramos, A., and Harrington, D. M. (2011). Characterization of telescope polarization properties across the visible and near-infrared spectrum. Case study: The Dunn Solar Telescope. Astronomy and Astrophysics, 531, 2.CrossRefGoogle Scholar
Sparks, W., Germer, T. A., MacKenty, J. W., and Snik, F. (2012). Compact and robust method for full stokes spectropolarimetry. Applied Optics, 51, 54955551.CrossRefGoogle ScholarPubMed
Steele, I. A., Bates, S. D., Carter, D.et al. (2006). RINGO: A novel ring polarimeter for rapid GRB followup. In Ground-based and Airborne Instrumentation for Astronomy. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 6269. Bellingham WA: International Society for Optics and Photonics.Google Scholar
Tanré, D., Bréon, F. M., Deuzé, J. L.et al. (2011). Remote sensing of aerosols by using polarized, directional and spectral measurements within the A-Train: The PARASOL mission. Atmospheric Measurement Techniques Discussions, 4(2), 20372069.Google Scholar
Thalmann, C., Schmid, H. M., Boccaletti, A.et al. (2008). SPHERE ZIMPOL: Overview and performance simulation. In Ground-based and Airborne Instrumentation for Astronomy II. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 7014. Bellingham WA: International Society for Optics and Photonics.Google Scholar
Tinbergen, J. (1996). Astronomical Polarimetry. Cambridge University Press.CrossRefGoogle Scholar
Tinbergen, J. (2007). Accurate optical polarimetry on the Nasmyth platform. Publications of the Astronomical Society of the Pacific, 119, 13711384.CrossRefGoogle Scholar
Tomasko, M. G., Doose, L. R., Dafoe, L. E., and See, C. (2009). Limits on the size of aerosols from measurements of linear polarization in Titan’s atmosphere. Icarus, 204(1), 271283.CrossRefGoogle Scholar
Tomczyk, S., Card, G. L., Darnell, T.et al. (2008). An instrument to measure coronal emission line polarization. Solar Physics, 247, 411428.CrossRefGoogle Scholar
Tomczyk, S., Casini, R., de Wijn, A. G., and Nelson, P. G. (2010). Wavelength-diverse polarization modulators for Stokes polarimetry. Applied Optics, 49, 35803586.CrossRefGoogle ScholarPubMed
Tsuneta, S., Ichimoto, K., Katsukawa, Y.et al. (2008). The solar optical telescope for the Hinode mission: An overview. Solar Physics, 249(2), 167196.CrossRefGoogle Scholar
Tyo, J. S., Goldstein, D. L., Chenault, D. B., and Shaw, J. A. (2006). Review of passive imaging polarimetry for remote sensing applications. Applied Optics, 45, 54535469.CrossRefGoogle ScholarPubMed
Uribe-Patarroyo, N., Alvarez-Herrero, A., Garca Parejo, P.et al. (2011). Space-qualified liquid-crystal variable retarders for wide-field-of-view coronagraphs. In Solar Physics and Space Weather Instrumentation IV. SPIE, Vol. 8148. Bellingham WA: International Society for Optics and Photonics.Google Scholar
Van Harten, G., Snik, F., and Keller, C. U. (2009). Polarization properties of real aluminum mirrors, I. Influence of the aluminum oxide layer. Publications of the Astronomical Society of the Pacific, 121, 377383.CrossRefGoogle Scholar
Van Harten, G., Snik, F., Rietjens, J. H.et al. (2011). Prototyping for the Spectropolarimeter for Planetary EXploration (SPEX): Calibration and sky measurements. In SPIE Optical Engineering + Applications. Bellingham WA: International Society for Optics and Photonics, p. 81600Z.Google Scholar
Van Harten, G., Snik, F., Rietjens, J. H., Smit, J. M., and Keller, C. U. (2014). Spectral line polarimetry with a channeled polarimeter. Applied Optics, 53, 41874194.CrossRefGoogle Scholar
Walsh, J. R. (2001). Polarization Properties of ACS. Instrument Science Report ACS 2001-01. Space Telescope Science Institute. Available online at: www.stsci.edu/hst/acs/documents/isrs/isr0101.pdf (accessed January 27, 2015).Google Scholar
West, R., Knowles, B., Birath, E.et al. (2010). In-flight calibration of the Cassini imaging science sub-system cameras. Planetary and Space Science, 58(11), 14751488.CrossRefGoogle Scholar
Whittet, D. C. B., Martin, P. G., Hough, J. H., Rouse, M. F., Bailey, J. A., and Axon, D. J. (1992). Systematic variations in the wavelength dependence of interstellar linear polarization. The Astrophysical Journal, 386, 562577.CrossRefGoogle Scholar
Wiktorowicz, S. J. and Matthews, K. (2008). A high-precision optical polarimeter to measure inclinations of high-mass X-ray binaries. Publications of the Astronomical Society of the Pacific, 120, 12821297.CrossRefGoogle Scholar
Witzel, G., Eckart, A., Buchholz, R. M.et al. (2011). The instrumental polarization of the Nasmyth focus polarimetric differential imager NAOS/CONICA (NACO) at the VLT. Implications for time-resolved polarimetric measurements of Sagittarius A*. Astronomy and Astrophysics, 525, id. A130, 15 pp.CrossRefGoogle Scholar
Wolf, E. (2007). Introduction to the Theory of Coherence and Polarization of Light. Cambridge University Press.Google Scholar
Xu, C., Qu, Z., Zhang, X., Jin, C., and Yan, X. (2006). Polarimeter with two ferroelectric liquid-crystal modulators attached to the Yunnan solar tower, Applied Optics, 45, 84288433.CrossRefGoogle Scholar
Yun, G., Crabtree, K., and Chipman, R. (2011). Three-dimensional polarization ray-tracing calculus I: definition and diattenuation, Applied Optics, 50, 28552865.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×