Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-06-12T18:20:04.336Z Has data issue: false hasContentIssue false

2 - Statistical physics of biological motion

from Part I - Introduction: Movement

Published online by Cambridge University Press:  05 August 2012

Gandhimohan. M. Viswanathan
Affiliation:
Universidade Federal do Rio Grande do Norte, Brazil
Marcos G. E. da Luz
Affiliation:
Universidade Federal do Paraná, Brazil
Ernesto P. Raposo
Affiliation:
Universidade Federal de Pernambuco, Brazil
H. Eugene Stanley
Affiliation:
Boston University
Get access

Summary

Optimal foraging theory

Traits that allow individuals to forage more efficiently can be expected to be naturally selected. The hypothesis that natural mechanisms should drive foraging organisms to maximize their energy intake gave rise to what became known as optimal foraging theory. The idea can be traced to studies undertaken by MacArthur and Pianka [219] and Emlen [109] in 1966.

Optimal foraging theory predicts that foragers will behave to maximize the net caloric gain per unit time of foraging. It assumes differentiated functional classes of predators (grazers, parasites, etc.) and provides insight into correlations between physiological features and predation skills (e.g., digestion and ingestion rates). It also highlights the importance of handling time (e.g., for killing and eating prey) [156, 190, 191, 192, 218, 267].

A large body of theoretical work [162, 171] grew in an attempt to deal with the multitude of determinant factors and in order to identify the relevant parameters involved in the predicted optimization [328]. An important example is the marginal value theorem [75, 76], which states that for the forager to maximize the net energy gain per unit time while foraging in a (more or less uniformly) patchy environment, the forager must leave a given patch when the expected net gain from staying in the patch drops to the expected net gain from traveling to (and starting to search in) the next patch.

Type
Chapter
Information
The Physics of Foraging
An Introduction to Random Searches and Biological Encounters
, pp. 14 - 22
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×