Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T21:05:06.071Z Has data issue: false hasContentIssue false

13 - The Existence of Models

Published online by Cambridge University Press:  05 June 2012

John P. Burgess
Affiliation:
Princeton University, New Jersey
Get access

Summary

This chapter is entirely devoted to the proof of the compactness theorem. Section 13.1 outlines the proof, which reduces to establishing two main lemmas. These are then taken up in sections 13.2 through 13.4 to complete the proof, from which the Löwenheim–Skolem theorem also emerges as a corollary. The optional section 13.5 discusses what happens if nonenumerable languages are admitted: compactness still holds, but the Löwenheim–Skolem theorem in its usual ‘downward’ form fails, while an alternative ‘upward’ theorem holds.

Outline of the Proof

Our goal is to prove the compactness theorem, which has already been stated in the preceding chapter (in section 12.3). For convenience, we work with a version of firstorder logic in which the only logical operators are ∼, ∨, and ∃, that is, in which & and ∀ are treated as unofficial abbreviations. The hypothesis of the theorem, it will be recalled, is that every finite subset of a given set of sentences is satisfiable, and the conclusion we want to prove is that the set itself is satisfiable, or, as we more elaborately put it, belongs to the set S of all satisfiable sets of sentences. As a first step towards the proof, we set down some properties enjoyed by this target set S. The reason for not including & and ∀ officially in the language is simply that in this and subsequent lemmas we would need four more clauses, two for & and two for ∀.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×