Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-06-11T08:48:34.335Z Has data issue: false hasContentIssue false

1 - Morphology, life histories, and morphogenesis

Published online by Cambridge University Press:  18 December 2009

Christopher S. Lobban
Affiliation:
University of Guam
Paul J. Harrison
Affiliation:
University of British Columbia, Vancouver
Get access

Summary

Introduction: the plants and their environments

Seaweeds

The term “seaweeds” traditionally includes only macroscopic, multicellular marine red, green, and brown algae. However, each of these groups has microscopic, if not unicellular, representatives. All seaweeds at some stage in their life cycles are unicellular, as spores or zygotes, and may be temporarily planktonic (Amsler & Searles 1980). Some remain small, forming sparse but productive turfs on coral reefs (Hackney et al. 1989). The blue-green algae are widespread on temperate rocky and sandy shores (Whitton & Potts 1982) and have occasionally been acknowledged in “seaweed” floras (e.g., Setchell & Gardner 1919; Newton 1931). They are particularly important in the tropics, where large macroscopic tufts of Oscillatoriaceae and smaller but abundant nitrogen-fixing Nostocaceae are major components of the reef flora (Hackney et al. 1989). Again, there are many unicellular blue-green algae. On the other hand, some benthic diatoms – normally not considered seaweeds – form large and sometimes-abundant tube-dwelling colonies that resemble seaweeds and presumably respond to the environment in much the same way (Lobban 1989). A deep-water green, Palmoclathrus, forms a morphologically complex thallus built from an apparently amorphous matrix with a nearly uniform distribution of cells (Womersley 1971; O'Kelly 1988), and a tropical chrysophyte, Chrysonephos lewisii, forms large, Ectocarpus-like thalli (Taylor 1960). On a smaller scale are the colonial filaments of some simple red algae, such as Goniotrichum. In this book we shall consider macroscopic and microscopic benthic environments and how algae respond to those environments.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×